PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and mechanical properties of amorphous/crystalline ductile liquid immiscible Fe-Si-B-In alloy produced by two-component melt-spinning

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Mikrostruktura i właściwości mechaniczne ciągliwego stopu amorficzno-krystalicznego na osnowie Fe-Si-B-In wytworzonego przez odlewanie na wirujący walec z tygla dzielonego
Języki publikacji
EN
Abstrakty
EN
The two-component melt-spun (TCMS) Fe71.25Si9.5B14.25In5 alloy was produced from Fe75Si10B15 and Fe67.5Si9B13.5In10 alloys. The microstructure of the TCMS alloy was investigated by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). A tensile test of the alloy resulted in a tensile strength of Rm = 1040 MPa, yield strength Re= 919 MPa, total plastic elongation ɛtot = 3.29%, and traces of plastic deformation on the surface of the Fe-Si-B-In TCMS sample. Microstructural analysis of the amorphous/crystalline composite and tensile sample free surface show the reason for the ductility of the sample in relation to the Fe75Si10B15 alloy.
PL
Stop Fe71,25Si9,5B14,25In5 wytworzono w wyniku odlewania z tygla dzielonego na wirujący walec miedziany dwóch stopów (metoda TCMS): Fe75Si10B15 i Fe67,5Si9B13,5In10. Mikrostrukturę stopu TCMS badano za pomocą skaningowego mikroskopu elektronowego oraz dyfraktometru rentgenowskiego. Z przeprowadzonej statycznej próby rozciągania uzyskano wytrzymałość na rozciąganie stopu Rm= 1040 MPa, granicę plastyczności Re= 919 MPa, wydłużenie całkowite εtot = 3,29 %. Na powierzchni próbki stopu Fe-Si-B-In TCMS po zerwaniu zaobserwowano także ślady odkształcenia plastycznego. Analiza mikrostruktury otrzymanego amorficzno-krystalicznego kompozytu oraz powierzchni swobodnej próbki wyjaśniają przyczynę ciągliwości próbki w stosunku do stopu Fe75Si10B15.
Rocznik
Strony
57--66
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Pedagogical University of Cracow, Institute of Technology, Faculty of Mathematics, Physics and Technical Science, Krakow, Poland
  • Pedagogical University of Cracow, Institute of Technology, Faculty of Mathematics, Physics and Technical Science, Krakow, Poland
autor
  • Polish Academy of Sciences, Institute of Catalysis and Surface Chemistry, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, Krakow, Poland
Bibliografia
  • [1] Chang H.J., Yook W., Park E.S., Kyeong J.S., Kim D.H.: Synthesis of metallic glass composites using phase separation phenomena. Acta Materialia, 58 (2010), 2483–2491
  • [2] Kuan S.Y., Chou H.S., Liu M.C., Du X.H., Huang J.C.: Micromechanical response for the amorphous/amorphous nanolaminates. Intermetallics, 18 (2010), 2453–2457
  • [3] Mattern N., Gemming T., Thomas J., Goerigk G., Franz H., Eckert J.: Phase separation in Ni-Nb-Y metallic glasses. Journal of Alloys and Compounds, 495 (2010), 299–304
  • [4] Kim D.H., Kim W.T., Park E.S., Mattern N., Ecker J.: Phase separation in metallic glasses. Progress in Materials Science 58 (2013), 1103–1172
  • [5] Ziewiec K., Prusik K., Bryła K., Ziewiec A.: Microstructure of the Fe-Ni-P melt-spun ribbons produced from the single-chamber and from the double-chamber crucibles. Solid State Phenomena, 203–204 (2013), 361–367
  • [6] Ziewiec K., Błachowski A., Ruebenbauer K., Ziewiec A., Prusik K., Latuch J., Zięba M., Bryła K.: Microstructure of the Ni-Fe-Cu-P melt-spun ribbons produced from the single-chamber and from the double--chamber crucibles. Journal of Alloys and Compounds, 615 (2014), S29–S34
  • [7] Różycka M., Ziewiec K., Błachowski A., Ruebenbauer K., Prusik K.: Microstructure and fracture surface of the two-component melt-spun amorphous/amorphous composite. Journal of Non-Crystalline Solids, 412 (2015), 49–52
  • [8] Ziewiec K., Wojciechowska M., Błachowski A., Ruebenbauer K., Jankowska-Sumara I., Prusik K., Mucha D., Latuch J.: Microstructure, fracture, and thermal stability of Ni-Fe-Cu-P-B two-phase amorphous composite produced from the double-chamber crucible. Intermetallics, 65 (2015), 15–21
  • [9] He J., Jiang H., Chen S., Zhao J., Zhao L.: Liquid phase separation in immiscible Ag-Ni-Nb alloy and formation of crystalline/amorphous composite. Journal of Non-Crystalline Solids, 357 (2011), 3561–3564
  • [10] He J., Li H., Yang B., Zhao J., Zhang H., Hu Z.: Liquid phase separation and microstructure characterization in a designed Al-based amorphous matrix composite with spherical crystalline particle. Journal of Alloys and Compounds, 489 (2010), 535–540
  • [11] Nagase T., Suzuki M., Tanaka T.: Amorphous phase formation in Fe-Ag-based immiscible alloys. Journal of Alloys and Compounds, 619 (2015), 311–318
  • [12] Ziewiec K., Kędzierski Z.: The microstructure development in Fe32Cu20Ni28P10Si5B5 immiscible alloy and possibilities of formation of amorphous/crystalline composite. Journal of Alloys and Compounds, 480 (2009), 306–310
  • [13] Ziewiec K.: Characterization of immiscible Ni78Ag2P20 alloy and formation of amorphous/crystalline composite. Journal of Non-Crystalline Solids, 355 (2009), 2540–2543
  • [14] Ziewiec K., Kędzierski Z., Zielińska-Lipiec A., Stępiński J., Kąc S.: Formation properties and microstruc-ture of amorphous/crystalline composite Ag20Cu30Ti50 alloy using miscibility gap. Journal of Alloys and Compounds, 482 (2009), 114–117
  • [15] Ziewiec K., Malczewski P., Boczkal G., Prusik K.: Formation and properties of amorphous/crystalline ductile composites in Ni-Ag-P immiscible alloys. Solid State Phenomena,186 (2012), 216–221
  • [16] Luborsky F.E., Becker J.J., Walter J.L., Liebermann H.H.: Formation and magnetic properties of Fe-B-Si amorphous alloys. IEEE Transactions on Magnetics, 3 (1979), 1146–1149
  • [17] ® Metglas 2605 SA1 Iron Based Alloy, Metglass® Inc., 440 Allied Dr. Conway, SC – 29526
  • [18] Suwa Y., Agatsuma S., Hashi S., Ishiyama K.: Study of strain sensor using FeSiB Magnetostrictive thin film. IEEE Transactions on Magnetics, 46, 2 (2010), 666–669
  • [19] Chiriac H., Marinescu C.S.: New position sensor based on ultra-acoustic standing waves in FeSiB amorphous wires. Sensors and Actuators A, 81 (2000) 174–175
  • [20] Li S., Horikawa S., Park M., Chai Y., Vodyanoy V.J., Chin B.A.: Amorphous metallic glass biosensors. Intermetallics, 30 (2012), 80–85
  • [21] Poletti M.G., Battezzati L.: Assessment of the ternary Fe-Si-B phase diagram. CALPHAD: Computer Cou-pling of Phase Diagrams and Thermochemistry, 43 (2013), 40–47
  • [22] Boer F.R., Boom R., Mattens W.C.M., Miedema A.R., Niessen A.K.: Cohesion in metals: transition metal alloys. Cohesion and structure, vol. 1. Elsevier Science, Amsterdam 1988
  • [23] Takeuchi A., Inoue A.: Mixing enthalpy of liquid phase calculated by Miedema's scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys, Intermetallics, 18, 9 (2010), 1779–1789
  • [24] Ziewiec K., Bryła K., Błachowski A., Ruebenbauer K., Mucha D.: Characterization of microstructures and amorphization in Ni-Cu-Fe-P system. Journal of Alloys and Compounds, 483 (2009), 585–588
  • [25] Kovaleva L.A., Zinnatullin R.R., Mullayanov A.I., Mavletov M.V., Blagochinnov V.N.: Microstructure evolution of water-oil emulsions in high-frequency and microwave electromagnetic fields. High Temperature, 51, 6 (2013), 870–872
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d00cacd-cfad-4baf-a4b0-d70570c41a1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.