Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ rozstawu krawężników wież telekomunikacyjnych na ich sztywność na zginanie, ciężar całkowity i własności dynamiczne
Języki publikacji
Abstrakty
The paper presents analyses aimed at determining how the spacing between legs of a steel lattice telecommunication tower affects displacements of its top, its natural frequency, and its self-weight. The critical characteristic of the results is that they were obtained for structures optimized with respect to the load-carrying capacity of their individual components. It was assumed that levels of effort should be kept between 85% and 95%. As far as engineering practice is concerned, the key conclusion is that a larger distance between the legs has a positive impact on the self-weight of the structure. It was demonstrated that a larger leg spacing is related to a smaller self-weight of the tower and thus a smaller quantity of material required. The proposed research and calculation method makes it possible to conclude that providing a larger distance between the legs while optimizing structural members with respect to their effort (preferably by means of an automated process) results in both higher bending stiffness and lower structure self-weight required.
W artykule zaprezentowano analizy polegające na poszukiwaniu wpływu rozstawu krawężników kratowej, stalowej wieży telekomunikacyjnej na przemieszczenia wierzchołka konstrukcji, częstotliwość jej drgań własnych oraz ciężar własny obiektu. Krytyczną cechą uzyskanych wyników jest ta, że zostały one uzyskane dla konstrukcji zoptymalizowanych pod względem nośności jej poszczególnych elementów. Przyjęto, że stopień wytężenia powinien mieścić się w zakresie 85-95%. Kluczowym wnioskiem z punktu widzenia praktyki inżynierskiej jest ten, że zwiększony rozstaw krawężników wpływa pozytywnie na ciężar własny konstrukcji. Udowodniono relację: większy rozstaw – mniejszy ciężar własny wieży – mniejsze zużycie materiału. Zaproponowana metoda badawczo-obliczeniowa pozwala na stwierdzenie, że zwiększenie rozstawu krawężników przy jednoczesnej (najlepiej zautomatyzowanej) optymalizacji elementów konstrukcyjnych pod względem ich wytężenia, zarówno zwiększa sztywność na zginanie jak i zmniejsza wymagany ciężar własny konstrukcji.
Czasopismo
Rocznik
Tom
Strony
193--208
Opis fizyczny
Bibliogr. 19 poz., il., tab.
Twórcy
autor
- Lodz University of Technology, Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz, Poland
autor
- Lodz University of Technology, Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz, Poland
- Compact-Project Company, Lodz, Poland
Bibliografia
- [1] R.R. Elizalde, “Analysis of the Tower of Hercules, the World’s Oldest Extant Lighthouse”, Buildings, vol. 13, no. 5, 2023, doi: 10.3390/buildings13051219.
- [2] H.B. Anangapal, J. Bastin, and B. Krishnan, “Small wind turbines to power telecom towers in Rajasthan, India: A case study”, presented at International Conference on Materials, Energy and Mechanical Engineering, ICME2 2021, 17-18 December 2021, Andhra Pradesh, India.
- [3] R. Barros and L. Barros, “Parametric study of lattice towers on the influence of wind action for different typologies of bracing”, in COMPDYN Proceedings, 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2021, 28-30 June 2021, Athens, Greece, doi: 10.7712/120121.8627.20450.
- [4] K.D. Tsavdaridis, A. Nicolaou, A.D. Mistry, and E. Efthymiou, “Topology optimisation of lattice telecommunication tower and performance-based design considering wind and ice loads”, Structures, vol. 27, pp. 2379-2399, 2020, doi: 10.1016/j.istruc.2020.08.010.
- [5] I.F. Lorenzo, B.C. Elena, P.M. Rodriguez, and V.B.E. Parnas, “Dynamic analysis of self-supported tower under hurricane wind conditions”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 197, art. no. 104078, 2020, doi: 10.1016/j.jweia.2019.104078.
- [6] T. Lipecki, M. Gaczek, A. Goliger, G. Kimbar, and W. Węgrzyński, “Characteristic velocity of strong wind for wind engineering purposes”, Archives of Civil Engineering, vol. 69, no. 3, pp. 217-237, 2023, doi: 10.24425/ace.2023.146077.
- [7] I. Calotescu, S. Torre, A. Freda, and G. Solari, “Wind tunnel testing of telecommunication lattice towers equipped with ancillaries”, Engineering Structures, vol. 241, art. no. 112526, 2021, doi: 10.1016/j.engstruct.2021.112526.
- [8] P. Martin, V.B. Elena, A.M. Loredo-Souza, and E.B. Camano, “Experimental study of the effects of dish antennas on the wind loading of telecommunication towers”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 149, pp. 40-47, 2016, doi: 10.1016/j.jweia.2015.11.010.
- [9] P. Martin and A.E. Damatty, “Comparison of the Canadian standard and other standards for wind loading on self-supporting telecommunication towers”, Canadian Journal of Civil Engineering, vol. 48, no. 8, pp. 993-1003, 2021, doi: 10.1139/cjce-2020-0210.
- [10] J. Szafran and J. Telega, “Issues related to the assessment of an existing reinforcement of a lattice telecommunication tower”, in Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems – Proceedings of the 8th International Conference on Structural Engineering, Mechanics and Computation, 5-7 September 2022, Cape Town, South Africa, A. Zingoni, Ed. London: CRC Press, 2022, doi: 10.1201/9781003348443.
- [11] Y. Zhuge, J.E. Mills, and X. Ma, “Modelling of steel lattice tower angle legs reinforced for increased load capacity”, Engineering Structures, vol. 43, pp. 160-168, 2012, doi: 10.1016/j.engstruct.2012.05.017.
- [12] L. Saufnay, A. Beyer, J.P. Jaspart, and J.F. Demonceau, “Experimental and Numerical Investigations on Closely Spaced Built-Up Angle Members”, Journal of Structural Engineering (United States), vol. 149, no. 4, 2023, doi: 10.1061/JSENDH.STENG-11642.
- [13] C. Kumalasari, Y. Ding, M.K.S. Madugula, and F. Ghrib, “Compressive strength of solid round steel members strengthened with rods or angles”, Canadian Journal of Civil Engineering, vol. 33, no. 4, pp. 451-457, 2006, doi: 10.1139/l05-062.
- [14] J. Szafran, “An experimental investigation into failure mechanism of a full-scale 40 m high steel telecommunication tower”, Engineering Failure Analysis, vol. 54, pp. 131-145, 2015, doi: 10.1016/j.engfailanal.2015.04.017.
- [15] J. Szafran and K. Rykaluk, “A full-scale experiment of a lattice telecommunication tower under breaking load”, Journal of Constructional Steel Research, vol. 120, pp. 160-175, 2016, doi: 10.1016/j.jcsr.2016.01.006.
- [16] EN 1993-3-1:2006 Eurocode 3 – Design of steel structures – Part 3-1: Towers, masts and chimneys – Towers and masts. European Committee for standardization, 2006.
- [17] EN 1991-1-4:2010 Eurocode 1 – Action on structures – Part 1-4: General actions – Wind actions. European Committee for Standardization, 2010.
- [18] EN 1991-1-1:2010 Eurocode 3 – Design of steel structures – Part 1-1: General rules and rules for buildings. European Committee for Standardization, 2005.
- [19] M. Matuszkiewicz and R. Pigoń, “Parametric analysis of mast guys within the elastic and inelastic range”, Archives of Civil Engineering, vol. 68, no. 1, pp. 169-187, 2022, doi: 10.24425/ace.2022.140162.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cff684a-7936-4709-99e0-14510e6cbcd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.