Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nowadays, solar power is a potential alternative energy source. To get the best maximum power from solar power, it is necessary to have a strong enough inverter structure and a good control algorithm. This paper presents the Maximum Power Point Tracking (MPPT) algorithm of a solar PV system applied to a DC/DC/AC inverter to obtain maximum power, in which the DC/DC rectifier uses a Boost Converter and the DC/AC inverter uses a Modular Multilevel Converter (MMC). The purpose is to convert electricity from the grid-connected PV system. The MPPT algorithm uses the Incremental Conductance – Integral Regulator (INC-IR) method to find the maximum power point quickly and accurately in different weather conditions. The operation of an MMC uses the Nearest Level Modulation (NLM) method combined with a capacitor voltage balance algorithm to generate maximum AC voltage levels and control the capacitor voltage balance in the MMC. The Nearest Level Modulation method has the advantage of providing a very low valve switching frequency to increase the lifetime of the semiconductor valve. A closed-loop circuit with the PI controller performs the grid-connected power control process. This control and modulation process will produce sinusoidal alternating current (AC) and voltage with a sound total harmonic distortion (THD) index. The simulation of the system will be performed on MATLAB/Simulink software to demonstrate the performance of the proposed method and applied to a 21-level MMC.
Czasopismo
Rocznik
Tom
Strony
425--445
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., wz.
Twórcy
autor
- Faculty of Electrical and Electronic Engineering, Thuyloi University Vietnam
autor
- Department of Electrical Engineering, University of Transport and Communications Vietnam
Bibliografia
- [1] Lakshmanan S.A., Bharat S.R., Devanathan B., Oorappan G.M., Modelling and Analysis of TriState Boost Converter for Solar PV Applications, 2023 3rd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET) (2023), DOI: 10.1109/ICEFEET59656.2023.10452243.
- [2] Yahya A., Fadil E., Oulcaid H., Ammeh M., Giri L., Guerrero, Control of grid connected photovoltaic systems with microinverters: New Theoretical design and numerical evaluation, Asian J. Control, vol. 21, no. 1, pp. 1–13 (2017), DOI: 10.1002/asjc.1704.
- [3] Shukla K., Sudhakar K., Baredar P., Mamat R., Solar PV and BIPV system: Barrier challenges and policy recommendation in India, Renewable and Sustainable Energy Reviews, vol. 82, pp. 3314–3322 (2018), DOI: 10.1016/j.rser.2017.10.013.
- [4] Aziz S., Tajuddin M., Zidane T., Alwazzan M., Design and optimization of a grid-connected solar energy system: Study in Iraq, Sustainability, vol. 14, no. 13, 8121 (2022), DOI: 10.3390/su14138121.
- [5] Taha A., Babiker S., Design and Simulation of Voltage Source Grid Connected Inverter (VSI), 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (2018), DOI: 10.1109/ICCCEEE.2018.8515850.
- [6] Ganyao W., Jing L., Chuanwei L., Han W., Yu Y., Stability Analysis of Grid-Connected Wind Power Systems Based on SiC Devices, 2024 IEEE 10th Intern. Power Electronic and Motion Control Confer. (IPEMC2024-ECCE Asia) (2024), DOI: 10.1109/IPEMC-ECCEAsia60879.2024.10567641.
- [7] Logeswaran T., Monika N., Karuppusamy P., Vinosh M., Uthirasamy R., Raghavendran P.S., Implementation and Analysis of Hybrid Solar PV and Wind Energy based Microgrid, 2022 International Conference on Edge Computing and Applications (ICECAA) (2022), DOI: 10.1109/ICECAA55415.2022.9936214.
- [8] Wang K., Lixun Z., Weimin W., Youngjong K., Rongwu Z., Cascaded H-bridge Converter-based Large-Scale Photovoltaic Systems : Power Imbalance and Topology Derivation, 2021 IEEE 12th Energy Conversion Congress & Exposition – Asia (2021), DOI: 10.1109/ECCE-Asia49820.2021.9479315.
- [9] Dekka A., Wu B., Perez M., Zargari R., Evolution of topologies modeling control schemes and applications of modular multilevel converters, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 4, pp. 1631–1656 (2017), DOI: 10.1109/JESTPE.2017.2742938.
- [10] Jiang Z., Beniwal N., Ceballos S., Pou J., Farivar G., Analysis of the Average Neutral-Point Current Limits of the Neutral-Point-Clamped Converter Under Three-Level Modulation, IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, pp. 4079–4084 (2020), DOI: 10.1109/IECON43393.2020.9255382.
- [11] Sakamoto M., Haga H., Control Method for Single-Phase Active Filter Using Universal Smart Power Module, International Power Electronics Conference 2022(IPEC 2022), pp. 1288–1293 (2022) DOI: 10.1541/ieejjia.22006895.
- [12] Wang Y., Wu Y., Cui Y., Xu N., Wang P., Cao H., Harmonics analysis and simulation of NLM in MMC, 2016 China International Conference on Electricity Distribution (2016), DOI: 10.1109/CICED.2016.7575958.
- [13] Fujin D., Qian H., Chengkai L., Yongqing L., Qingsong W., Dan Liu., Circulating current suppression for MMC-HVDC systems with asymmetric arm impedance, CSEE Journal of Power and Energy Systems, vol. 7, iss., pp. 530–540 (2021), DOI: 10.17775/CSEEJPES.2019.02690.
- [14] Alamsyah A., Andarini A., Zulfiana S.M., DC-DC converter using maximum power point tracker (MPPT) perturb and observe (P&O) algorithm in large-scale PV system, vol. 3140, iss. 1, pp. 450–457 (2024), DOI: 10.1063/5.0221463.
- [15] Hsu T., Wu H., Tsai D., Photovoltaic Energy Harvester with Fractional Open-Circuit Voltage Based Maximum Power Point Tracking Circuit, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 257–261 (2019), DOI: 10.1109/TCSII.2018.2838672.
- [16] Sohel S., Alice C., Modelling and Simulation of Maximum Power Point Tracking Algorithm based PV Array and Utility Grid Interconnected System, 2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (2020), DOI: 10.1109/ICRIEECE44171.2018.9009106.
- [17] Razman A., Design of boost converter based on maximum power point resistance for photovoltaic applications, 2015 International Conference on Renewable Energy Research and Applications ICRERA 2015, pp. 1580–1585 (2015), DOI: 10.1016/j.solener.2017.12.016.
- [18] Nademi H., Das A., Burgos R., Norum E., A New Circuit Performance of Modular Multilevel Inverter Suitable for Photovoltaic Conversion Plants, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 393–404 (2016), DOI: 10.1109/JESTPE.2015.2509599.
- [19] Yumeng Tian, Harith R. Wickramasinghe, Zixin Li, Georgios Konstantinou, Modular Multilevel Converter Sub-modules for HVDC Applications, 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 09 March 2021, DOI: 10.1109/IPEMCECCEAsia48364.2020.9368019.
- [20] Mana S., Hitoshi H., Three-Phase Modular Multilevel Converters Composed of Universal Smart Power Module, 2022 IEEE Energy Conversion Congress and Exposition (ECCE) (2022), DOI: 10.1109/ECCE50734.2022.9948053.
- [21] Wang K., Lixun Z., Weimin W., Youngjong K., Rongwu Z., Cascaded H-bridge Converter-based Large-Scale Photovoltaic Systems: Power Imbalance and Topology Derivation, 2021 IEEE 12th Energy Conversion Congress & Exposition – Asia (2021), DOI: 10.1109/ECCE-Asia49820.2021.9479315.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cfbdfb3-5a75-47fd-858d-bc39ffb17021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.