Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the last few years, cationic layered clays, including bentonites have been investigated as potentialcatalysts for SCR DeNOxsystems. In this work, bentonite as the representative of layered clays wasmodified in order to obtain an alternative, low-cost NH3–SCR catalyst. Samples of raw clay wereactivated with HCl or HNO3, treated with C2H2O4and subsequently pillared with alumina by the ion-exchange. Afterwards, the modified materials were impregnated with iron and copper. The obtainedcatalysts were characterized by XRD and FT-IR. SCR catalytic tests carried out over analyzed samplesindicated the conversion of NO of approximately 90% for the most active sample. The type of acidused for modification and the type of active phase strongly influenced the catalytic properties of theanalyzed materials.
Czasopismo
Rocznik
Tom
Strony
13–--24
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Department of Fuel Technology,Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków
autor
- AGH University of Science and Technology, Department of Fuel Technology,Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków
autor
- AGH University of Science and Technology, Department of Fuel Technology,Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków
autor
- AGH University of Science and Technology, Department of Fuel Technology,Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków
Bibliografia
- 1. Burch R., Breen J.P., Meunier F.C., 2002. A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Appl. Catal. B, 39, 4, 283–303. DOI: 10.1016/S0926-3373(02)00118-2.
- 2. Captain D.K., Roberts K.L., Amiridis M.D., 1998. The selective catalytic reduction of nitric oxide by propylene over Pt/SiO2. Catal. Today, 42, 93–100. DOI: 10.1016/S0920-5861(98)00080-7.
- 3. Cheng L.S., Yang R.T., Chen N., 1996. Iron oxide and chromia supported on titania-pillared clay for selective catalytic reduction of nitric oxide with ammonia. J. Catal., 164, 70–81. DOI: 10.1006/jcat.1996.0364.
- 4. Chmielarz L., Kowalczyk A., Skoczek M., Rutkowska M., Gil B., Natkański P., Radko M., Motak M., Debek R., Ryczkowski J., 2018. Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols. Appl. Clay Sci., 160, 116–125. DOI: 10.1016/j.clay.2017.12.015.
- 5. Chmielarz L., Kowalczyk A., Wojciechowska M., Boroń P., Dudek B., Michalik M., 2014. Montmorillonite intercalated with SiO2, SiO2–Al2O3 or SiO2–TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process. Chem. Pap., 68, 1219–1227. DOI: 10.2478/s11696-013-0463-0.
- 6. Chmielarz L., Kowalczyk A., Michalik M., Dudek B., Piwowarska Z., Matusiewicz A., 2010. Acid-activated vermiculites and phlogophites as catalysts for the DeNOx process. Appl. Clay Sci., 49, 156–162. DOI: 10.1016/j.clay.2010.04.020.
- 7. Chmielarz L., Kuśtrowski, P., Dziembaj R., Cool P., Vansant E.F., 2007. Selective catalytic reduction of NO with ammonia over porous clay heterostructured modified with copper and iron species. Catal. Today, 119, 181–186. DOI: 10.1016/j.cattod.2006.08.017.
- 8. Chmielarz L., Zbroja M., Kuśtrowski P., Dudek B., Rafalska-Łasocha A., Dziembaj. R., 2004. Pillared montmorillonites modified with silver: Temperature programmed desorption studies. J. Therm. Anal. Calorim., 77, 115–123. DOI: 10.1023/B:JTAN.0000033194.99509.c5.
- 9. Chmielarz L., Kuśtrowski P., Zbroja M., ŁasochaW., Dziembaj R., 2004. Selective reduction of NO with NH3 over pillared clays modified with transition metals. Catal. Today, 90, 43–49. DOI: 10.1016/j.cattod.2004.04.007.
- 10. Chmielarz L., Kuśtrowski P., Zbroja M., Rafalska-Łasocha A., Dudek B., Dziembaj R., 2003. SCR of NO by NH3 on alumina or titania-pillared montmorillonite various modified with Cu or Co: Part I. General characterization and catalysts screening. Appl. Catal. B Environ., 45, 103–116. DOI: 10.1016/S0926-3373(03)00121-8.
- 11. Colombo M., Nova I., Tronconi E., 2010. A comparative study of the NH3–SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst. Catal. Today, 151, 223–230, DOI: 10.1016/j.cattod.2010.01.010.
- 12. Church R.B., McCarthy B.J., 2008. An investigation of Cu(II) adsorption of raw and acid-activated bentonite: A combined, potentiometric, thermodynamic, XRD, IR, DTA study. J. Hazard. Mater., 151, 3, 682–691. DOI: 10.1016/j.jhazmat.2007.06.040.
- 13. Fu M., Li C., Lu P., QU L., Zhang M., Zhou Y., Yu M., Fang Y., 2014. A review on selective catalytic reduction on NOx by supported catalysts at 100–300 ◦C – catalysts, mechanism, kinetics. Catal. Sci. Technol., 4, 14–25. DOI: 10.1039/C3Cy00414G.
- 14. Gil A., Korili S.A., Trujillano R., Vicente M.A. (Eds.), 2010. Pillared clays and related catalysts. Springer-Verlag New York. DOI: 10.1007/978-1-4419-6670-4.
- 15. Grzybek T., 2007. Layered clays as SCR deNOx catalysts. Catal. Today, 19, 125–132. DOI: 10.1016/j.cattod. 2006.08.006.
- 16. Koh C.A., Nooney R., Tahir S., 1997. Characterisation and catalytic properties of MCM-41 and Pd / MCM-41 materials. Catal. Lett., 47, 199–203. DOI: 10.1023/A:1019025609426.
- 17. Kaufhold S., Dohrmann R., Ufer K., Meyer F.M., 2002. Comparison of methods for the quantification of montmorillonite in bentonites. Appl. Clay Sci., 22, 145–151. DOI: 10.1016/S0169-1317(02)00131-X.
- 18. Jingli H., Xiaolong T., HonghongY., Kai L., Xin S., 2015. Low-temperature selective catalytic oxidation of ammonia over the CuOx/C-TiO2 catalyst. Res. Chem. Intermed., 41, 5743–5752. DOI: 10.1007/s11164-014-1698-2.
- 19. Li Y., Lin Y., Cheng C., Hao, J., Zhu T., 2018. On the nature of nitrogen-containing groups in the SCR of NO over functionalized activated coke. Waste Biomass Valor. DOI: 10.1007/s12649-018-0428-1.
- 20. Lietti L.,Nova I., Ramis G., Dall’Acqua L., Busca G., Giamello E., Forzatti P., Bregani F., 1999. Characterization and reactivity of V2O5–MoO3/TiO2 De–NOxSCR catalysts. J. Catal., 187, 419–435. DOI: 10.1006/jcat.1999.2603.
- 21. Ma L., Cheng Y., Cavataio G., McCabe R., Fu L., Li J., 2013. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3–SCR of NOx in diesel exhaust. Chem. Eng. J., 225, 323–330. DOI: 10.1016/j.cej.2013.03.078.
- 22. Madejova J., 2003. FTIR techniques in clay mineral studies. Vib. Spectrosc., 31, 1–10. DOI: 10.1016/S0924-2031(02)00065-6.
- 23. Madejova J., Palkova H., Komadel P., 2006. Behaviour of Li+ and Cu2+in heated montmorillonite: Evidence from far-, mid-, and near-IR regions. Vib. Spectrosc., 40, 1, 80–88. DOI: 10.1016/j.vibspec.2005.07.004.
- 24. Motak M., 2008. Montmorillonites modified with polymer and promoted with copper as DeNOx catalysts. Catal. Today, 137, 247–252. DOI: 10.1016/j.cattod.2008.02.001.
- 25. Ohtsuka H., Tabata T., 1999. Effect of water vapor on the deactivation of Pd-zeolite catalysts for selective catalytic reduction of nitrogen monoxide by methane. Appl. Catal. B, 21, 133–139. DOI: 10.1016/S0926-3373(99)00014-4.
- 26. Peng Y., Li J., Si W., Luo J., Wang Y., Fu J., Li X., Crittenden J., Hao J., 2015. Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic. Appl. Catal. B Environ., 168–169, 195–202. DOI: 10.1016/j.apcatb.2014.12.005.
- 27. Piwowarska Z., Dudek B., Gil B., Chmielarz L., Kuśtrowski P., Michalik M., 2009. Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process. Appl. Catal., B, 88, 331–340. DOI: 10.1016/j.apcatb.2008.11.001.
- 28. Regulation (EC) No 595/2009 of the European Parliament and of the Council of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (Euro VI) and on access to vehicle repair and maintenance information and amending Regulation (EC) No 715/2007 and Directive 2007/46/EC and repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC. OJ L 188, 18.7.2009, 1–13.
- 29. Richter M., Bentrup U., Eckelt R., Schneider M., Pohl M., Fricke R., 2004. The effect of hydrogen on the selective catalytic reduction of NO in excess oxygen over Ag /Al2O3. Appl. Catal. B, 51, 261–274. DOI: 10.1016/j.apcatb. 2004.02.015.
- 30. Rutkowska M., Pacia I., Bas˛ag S., Kowalczyk A., Piwowarska Z., Duda M., Tarach T.A., Gora-Marek K., Michalik M,. Diaz U., Chmielarz L., 2017. Catalytic performance of commercial Cu-ZSM-5 zeolite modi- fied by desilication in NH3–SCR and NH3-SCO processes. Microporous Mesoporous Mater., 246, 193–206. DOI: 10.1016/j.micromeso.2017.03.017.
- 31. Samojeden B., Grzybek T., 2016. The influence of the promotion of N-modified activated carbon with iron onNOremoval byNH3–SCR (Selective catalytic reduction). Energy, 116, 1484–1491. DOI: 10.1016/j.energy.2016.04.059.
- 32. Santos S.S.G., Silva H.R.M., de Souza A.G., Alves A.P.M., da Silva Filho E.C., Fonseca M.G., 2015. Acid-leached mixed vermiculites obtained by treatment with nitric acid. Appl. Clay Sci., 104, 286–294. DOI: 10.1016/j.clay. 2014.12.008.
- 33. Si Z.,Weng D., Wu X., Li J., Li G., 2010. Structure, acidity and activity of CuOx/WOx–ZrO2 catalyst for selective catalytic reduction of NO by NH3. J. Catal., 271, 43–51. DOI: 10.1016/jcat.2010.01.025.
- 34. Smirniotis P.G., Pena D.A., Uphade B.S., 2001. Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on hombikat TiO2. Angew. Chem. Int. Ed., 40, 13, 2479–2482. DOI: 10.1002/1521-3773(20010702)40:13<2479::AID-ANIE2479>3.0.CO;2-7.
- 35. Song S., Jiang S., 2012. Selective catalytic oxidation of ammonia to nitrogen over CuO/CNTs: The promoting effect of the defects of CNTs on the catalytic activity and selectivity. Appl. Catal. B Environ., 117–118, 346–350. DOI: 10.1016/j.apcatb.2012.01.030.
- 36. Thirupathi B., Smirniotis P.G., 2011. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Appl. Catal. B, 110, 195–206. DOI: 10.1016/j.apcatb.2011.09.001.
- 37. Tyagi B., Chudasama C.D., Jasra R.V., 2006. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim. Acta, Part A, 64, 273–278. DOI: 10.1016/j.saa.2005.07.018.
- 38. Wierzbicki D., D˛ebek R., Szczurowski J., Bas˛ag S., Włodarczyk M., Motak M., Baran R., 2015. Copper, cobalt and manganese: Modified hydrotalcite materials as catalysts for the selective catalytic reduction of NO with ammonia, the influence of manganese concentration. Comptes Rendus Chim., 18, 1074–1083. DOI: 10.1016/j.crci. 2015.06.009.
- 39. Vaccari A., 1998. Preparation and catalytic properties of cationic and anionic clays. Catal. Today, 41, 53–71. DOI: 10.1016/S0920-5861(98)00038-8.
- 40. Zhang T., Liu J., Wang D., Zhao Z., Wei Y., Cheng Y.W., Jiang G., Duan A., 2004. Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe–Cu nanocomposite catalysts?: The Fe–Cu bimetallic effect. Appl. Catal. B, 148–149, 520–531. DOI: 10.1016/j.apcatb.2013.11.006.
- 41. Ziemiański P., Kałahurska K., Samojeden B., 2017. Selective catalytic reduction ofNOwithNH3 on mixed alumina–iron (III) oxide pillared montmorillonite ‘Cheto’ Arizona, modified with hexamminecobalt (III) chloride. Adsorpt. Sci. Technol., 35, 825–833. DOI: 10.1177/0263617417710141.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cf7c456-04a4-4926-8005-2e2529ebd830