PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coherent structures and flow control: genesis and prospect

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The genesis of both coherent structures and reactive flow control strategies is explored. Futuristic control systems that utilize microsensors and microactuators together with artificial intelligence to target specific coherent structures in a transitional or turbulent flow are considered. Of possible interest to the readers of this journal is the concept of smart wings, to be briefly discussed early in the article.
Rocznik
Strony
411--444
Opis fizyczny
Bibliogr. 287 poz., fot., rys.
Twórcy
  • Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
Bibliografia
  • [1] T. Weis-Fogh and M. Jensen, “Biology and Physics of Locust Flight. I. Basic Principles in Insect Flight. A Critical Review,” Philo. T. R. Soc. B 239, 415–458 (1956).
  • [2] M.J. Lighthill, “On the Weis-Fogh Mechanism of Lift Generation,” J. Fluid Mech. 60, 1–17 (1973).
  • [3] K.D. Jones, C.M. Dohring, and M.F. Platzer, “Experimental and Computational Investigation of the Knoller–Betz Effect,” AIAA J. 36, 1240–1246 (1998).
  • [4] K.D. Jones and M.F. Platzer, “Bio-Inspired Design of Flapping Wings Micro Air Vehicles–an Engineer’s Perspective,” AIAA Paper No. 2006?0037, Reston, Virginia, 2006.
  • [5] M.F. Platzer, “Integrated Propulsion/Lift/Control System for Aircraft and Ship Applications,” United States Patent No. 5, 975, 462, 1999.
  • [6] H.T. Banks, R.C. Smith, and Y. Wang, Smart Material Structures: Modeling, Estimation and Control, Wiley, New York, 1996.
  • [7] M. Schwartz, editor, Encyclopedia of Smart Materials, vols. 1 and 2, Wiley-Interscience, New York, 2002.
  • [8] G.M. Atkinson and O. Zoubeida, “Polymer Microsystems: Materials and Fabrication,” in The MEMS Handbook, ed. M. Gadel- Hak, vol. II, pp. 9.1–9.36, CRC Taylor&Francis, Boca Raton, Florida, 2006.
  • [9] H. Lamb, Hydrodynamics, second edition, Cambridge University Press, Cambridge, Great Britain, 1895.
  • [10] J.L. Lumley, “Turbulence and Turbulence Modeling,” in Research Trends in Fluid Dynamics, eds. J.L. Lumley, A. Acrivos, L.G. Leal, and S. Leibovich, pp. 167–177, American Institute of Physics, Woodbury, New York, 1996.
  • [11] H.W. Liepmann, “The Rise and Fall of Ideas in Turbulence,” American Scientist 67, no. 2, 221–228 (1979).
  • [12] J.C.R. Hunt, D.J. Carruthers, and J.C.H. Fung, “Rapid Distortion Theory as a Means of Exploring the Structure of Turbulence,” in New Perspectives in Turbulence, ed. L. Sirovich, pp. 55–103, Springer-Verlag, Berlin, 1991.
  • [13] M. Gad-el-Hak, “Splendor of Fluids in Motion,” Prog. Aerosp. Sci. 29, 81–123 (1992).
  • [14] E. MacCurdy, The Notebooks of Leonardo da Vinci, vol. I and II, Reynal & Hitchcock, New York, 1938.
  • [15] J.L. Lumley, “Some Comments on Turbulence,” Phys. Fluids A 4, 203–211 (1992).
  • [16] O. Reynolds, “An Experimental Investigation of the Circumstances which Determine Whether the Motion of Water shall be Direct or Sinuous, and of the Law of Resistance in Parallel Channels,” Phil. Trans. Roy. Soc. Lond. A 174, 935–982 (1883).
  • [17] O. Reynolds, “On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion,” Phil. Trans. Roy. Soc. Lond. A 186, 123–164 (1895).
  • [18] J.L. Lumley, “Turbulence Modeling,” J. Appl. Mech. 50, 1097–1103 (1983).
  • [19] J.L. Lumley, “Turbulence Modeling,” Proc. Tenth U.S. National Cong. of Applied Mechanics, ed. J. P. Lamb, pp. 33–39, ASME, New York, 1987.
  • [20] C.G. Speziale, “Analytical Methods for the Development of Reynolds-Stress Closures in Turbulence,” Annu. Rev. Fluid Mech. 23, 107–157 (1991).
  • [21] D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, Los Angeles, California, 1993.
  • [22] A.K.M.F. Hussain, “Coherent Structures and Turbulence,” J. Fluid Mech. 173, 303–356 (1986).
  • [23] J.T.C. Liu, “Contributions to the Understanding of Large- Scale Coherent Structures in Developing Free Turbulent Shear Flows,” in Advances in Applied Mechanics, eds. J. W. Hutchinson and T. Y. Wu, vol. 26, pp. 183–309, Academic Press, Boston, Massachusetts, 1988.
  • [24] H.L. Dryden, “Recent Advances in the Mechanics of Boundary Layer Flow,” in Advances in Applied Mechanics, eds. R. von Mises and Th. von Kármán, vol. 1, pp. 1–40, Academic Press, Boston, Massachusetts, 1948.
  • [25] H.W. Liepmann, “Aspects of the Turbulence Problem. Part II,” Z. Angew. Math. Phys. 3, 407–426 (1952).
  • [26] A.A. Townsend, The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge, Great Britain, 1956.
  • [27] G. Haller, “An Objective Definition of a Vortex,” J. Fluid Mech. 525, 1–26 (2005).
  • [28] M. Serra and G. Haller, “Forecasting Long-Lived Lagrangian Vortices From Their Objective Eulerian Footprints,” J. Fluid Mech. 813, 436–457 (2017).
  • [29] J. Kasten, J. Reininghaus, I. Hotz, H.-C. Hege, B. R. Noack, G. Daviller, and M. Morzyński, “Acceleration Feature Points of Unsteady Shear Flows,” Arch. Mech. 68, 55–80 (2016).
  • [30] H.W. Liepmann, “Free Turbulent Flows,” Mécanique de la Turbulence, Int. Symp. Nat. Sci. Res. Centre, pp. 211–227, Marseille 1961, CNRS, Paris, France, 1962.
  • [31] G.L. Brown and A. Roshko, “The Effect of Density Difference on the Turbulent Mixing Layer,” in Turbulent Shear Flows, pp. 23.1–23.12, AGARD-CP-93, Rhode-Saint-Génese, Belgium, 1971.
  • [32] G.L. Brown and A. Roshko, “On Density Effects and Large Structure in Turbulent Mixing Layers,” J. Fluid Mech. 64, 775–816 (1974).
  • [33] P. Holmes, J.L. Lumley, G. Berkooz, G., and C.W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, second edition, Cambridge University Press, Cambridge, Great Britain, 2012.
  • [34] M.V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software, A.K. Peters Ltd., Wellesley, Massachusetts, 1994.
  • [35] M. Farge, “Wavelet Transforms and Their Applications to Turbulence,” Annu. Rev. Fluid Mech. 24, 395–457 (1992).
  • [36] O.V. Vasilyev, D.A. Yuen, and S. Paolucci, “Solving PDEs UsingWavelets,” Computers in Physics 11, no. 5, 429–435 (1997).
  • [37] J. Laufer, “New Trends in Experimental Turbulence Research,” Annu. Rev. Fluid Mech. 7, 307–326 (1975).
  • [38] A.A. Townsend, The Structure of Turbulent Shear Flow, second edition, Cambridge University Press, Cambridge, Great Britain, 1976.
  • [39] B.J. Cantwell, “Organized Motion in Turbulent Flow,” Ann. Rev. Fluid Mech. 13, 457–515 (1981).
  • [40] H.E. Fiedler, “Coherent Structures in Turbulent Flows,” Prog. Aerosp. Sci. 25, 231–269 (1988).
  • [41] S.K. Robinson, “Coherent Motions in the Turbulent Boundary Layer,” Annu. Rev. Fluid Mech. 23, 601–639 (1991).
  • [42] J. Delville, L. Cordier, and J.-P. Bonnet, “Large-Scale-Structure Identification and Control in Turbulent Shear Flows,” in Flow Control: Fundamentals and Practices, eds. M. Gad-el-Hak, A. Pollard, and J.-P. Bonnet, 199–273, Springer-Verlag, Berlin, 1998.
  • [43] J.L. Lumley, “Coherent Structures in Turbulence,” in Transition and Turbulence, ed. R.E. Meyer, pp. 215–242, Academic Press, New York, 1981.
  • [44] M. Gad-el-Hak, R.F. Blackwelder, and J.J. Riley, “On the Growth of Turbulent Regions in Laminar Boundary Layers,” J. Fluid Mech. 110, 73–95 (1981).
  • [45] H.E. Fiedler, “Control of Free Turbulent Shear Flows,” in Flow Control: Fundamentals and Practices, eds. M. Gad-el-Hak, A. Pollard, and J.-P. Bonnet, pp. 335–429, Springer-Verlag, 1998, Berlin.
  • [46] A. Roshko, “Structure of Turbulent Shear Flows: a New Look,” AIAA J. 14, 1349–1357 (1976).
  • [47] C.D. Winant and F.K. Browand, “Vortex Pairing: the Mechanism of Turbulent Mixing Layer Growth at Moderate Reynolds Numbers,” J. Fluid Mech. 63, 237–255 (1974).
  • [48] A.A. Townsend, “Equilibrium Layers and Wall Turbulence,” J. Fluid Mech. 11, 97–120 (1961).
  • [49] H.P. Bakewell and J.L. Lumley, “Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow,” Phys. Fluids 10, 1880–1889 (1967).
  • [50] A.A. Townsend, “Entrainment and the Structure of Turbulent Flow,” J. Fluid Mech. 41, 13–46 (1970).
  • [51] R.L. Panton, editor, Self-Sustaining Mechanisms of Wall Turbulence, Computational Mechanics Publications, Southampton, Great Britain, 1997.
  • [52] L.S.G. Kovasznay, “The Turbulent Boundary Layer,” Annu. Rev. Fluid Mech. 2, 95–112 (1970).
  • [53] W.W. Willmarth, “Structure of Turbulence in Boundary Layers,” Adv. Appl. Mech. 15, 159–254 (1975).
  • [54] W.W. Willmarth, “Pressure Fluctuations beneath Turbulent Boundary Layers,” Annu. Rev. Fluid Mech. 7, 13–37 (1975).
  • [55] P.G. Saffman, “Problems and Progress in the Theory of Turbulence,” in Structure and Mechanisms of Turbulence II, ed. H. Fiedler, pp. 273–306, Springer-Verlag, Berlin, 1978.
  • [56] H.E. Fiedler, “Coherent Structures,” in Advances in Turbulence, eds. G. Comte-Bellot and J. Mathieu, pp. 320–336, Springer-Verlag, Berlin, 1986.
  • [57] R.F. Blackwelder, “Coherent Structures Associated with Turbulent Transport,” in Transport Phenomena in Turbulent Flows, eds. M. Hirata and N. Kasagi, pp. 69–88, Hemisphere, New York, 1988.
  • [58] R.F. Blackwelder, “Some Notes on Drag Reduction in the Near- Wall Region,” in Flow Control: Fundamentals and Practices, eds. M. Gad-el-Hak, A. Pollard and J.-P. Bonnet, pp. 155–198, Springer-Verlag, Berlin, 1998.
  • [59] M. Gad-el-Hak, R.F. Blackwelder, and J.J. Riley, “On the Interaction of Compliant Coatings with Boundary Layer Flows,” J. Fluid Mech. 140, 257–280 (1984).
  • [60] R.E. Falco, “The Production of Turbulence Near aWall,” AIAA Paper No. 80-l356, New York, 1980.
  • [61] J.J. Riley and M. Gad-el-Hak, “The Dynamics of Turbulent Spots,” in Frontiers in Fluid Mechanics, eds. S.H. Davis and J.L. Lumley, pp. 123–155, Springer-Verlag, Berlin, 1985.
  • [62] L.S.G. Kovasznay, V. Kibens, V., and R.F. Blackwelder, “Large-Scale Motion in the Intermittent Region of a Turbulent Boundary Layer,” J. Fluid Mech. 41, 283–325 (1970).
  • [63] R.F. Blackwelder and L.S.G. Kovasznay, “Time-Scales and Correlations in a Turbulent Boundary Layer,” Phys. Fluids 15, 1545–1554 (1972).
  • [64] S.T. Paiziz and W.H. Schwarz, “An Investigation of the Topography and Motion of the Turbulent Interface,” J. Fluid Mech. 63, 315–343 (1974).
  • [65] K.R. Sreenivasan, R. Ramshankar, and C. Meneveau, “Mixing, Entrainment and Fractal Dimensions of Surfaces in Turbulent Flows,” Proc. R. Soc. Lond. A 421, 79–108 (1989).
  • [66] M. Zilberman, I. Wygnanski, I., and R.E. Kaplan, “Transitional Boundary Layer Spot in a Fully Turbulent Environment,” Phys. Fluids 20, no. 10, part II, S258–S271 (1977).
  • [67] M.R. Head and P.R. Bandyopadhyay, “New Aspects of Turbulent Boundary-Layer Structure,” J. Fluid Mech. 107, 297–338 (1981).
  • [68] R.E. Falco, “Some Comments on Turbulent Boundary Layer Structure Inferred from the Movements of a Passive Contaminant,” AIAA Paper No. 74?99, New York, 1974.
  • [69] R.E. Falco, “Coherent Motions in the Outer Region of Turbulent Boundary Layers,” Phys. Fluids 20, no. 10, part II, S124–S132 (1977).
  • [70] A.E. Perry, T.T. Lim, and E.W. Teh, “A Visual Study of Turbulent Spots,” J. Fluid Mech. 104, 387–405 (1981).
  • [71] S.K. Robinson, S.J. Kline, and P.R. Spalart, “A Review of Quasi-Coherent Structures in a Numerically Simulated Turbulent Boundary Layer,” NASA Technical Memorandum No. TM-102191, Washington, D.C., 1989.
  • [72] P.R. Spalart, “Direct Simulation of a Turbulent Boundary Layer up to R? = 1410,” NASA Technical Memorandum No. TM-89407, Washington, D.C., 1986.
  • [73] P.R. Spalart, “Direct Simulation of a Turbulent Boundary Layer up to R? = 1410,” J. Fluid Mech. 187, 61–98 (1988).
  • [74] S.J. Kline, and P.W. Runstadler, “Some Preliminary Results of Visual Studies of the Flow Model of the Wall Layers of the Turbulent Boundary Layer,” J. Appl. Mech. 26, 166–170 (1959).
  • [75] P.W. Runstadler, S.J. Kline, and W.C. Reynolds, “An Experimental Investigation of Flow Structure of the Turbulent Boundary Layer,” Department of Mechanical Engineering Report No. MD-8, Stanford University, Stanford, California, 1963.
  • [76] S.J. Kline,W.C. Reynolds, F.A. Schraub, and P.W. Runstadler, “The Structure of Turbulent Boundary Layers,” J. Fluid Mech. 30, 741–773 (1967).
  • [77] H.T. Kim, S.J. Kline, and W.C. Reynolds, “The Production of Turbulence Near a Smooth Wall in a Turbulent Boundary Layer,” J. Fluid Mech. 50, 133–160 (1971).
  • [78] G.R. Offen and S.J. Kline, “Combined Dye-Streak and Hydrogen- Bubble Visual Observations of a Turbulent Boundary Layer,” J. Fluid Mech. 62, 223–239 (1974).
  • [79] G.R. Offen and S.J. Kline, “A Proposed Model of the Bursting Process in Turbulent Boundary Layers,” J. Fluid Mech. 70, 209–228 (1975).
  • [80] R.F. Blackwelder, “The Bursting Process in Turbulent Boundary Layers,” in Workshop on Coherent Structure of Turbulent Boundary Layers, eds. C.R. Smith and D.E. Abbott, pp. 211–227, Lehigh University, Bethlehem, Pennsylvania, 1978.
  • [81] R.F. Blackwelder and H. Eckelmann, “Streamwise Vortices Associated with the Bursting Phenomenon,” J. Fluid Mech. 94, 577–594 (1979).
  • [82] P.G. Saffman and G.R. Baker, “Vortex Interactions,” Annu. Rev. Fluid Mech. 11, 95–122 (1979).
  • [83] C.R. Smith and S.P. Schwartz, “Observation of Streamwise Rotation in the Near-Wall Region of a Turbulent Boundary Layer,” Phys. Fluids 26, 641–652 (1983).
  • [84] S. Corrsin, “Some Current Problems in Turbulent Shear Flow,” in Symp. on Naval Hydrodynamics, ed. F.S. Sherman, pp. 373–400, National Academy of Sciences/National Research Council Publication No. 515, Washington, D.C., 1957.
  • [85] C.R. Smith and S.P. Metzler, “The Characteristics of Low-Speed Streaks in the Near-Wall Region of a Turbulent Boundary Layer,” J. Fluid Mech. 129, 27–54 (1983).
  • [86] J. Kim, P. Moin, and R.D. Moser, “Turbulence Statistics in Fully-Developed Channel Flow at Low Reynolds Number,” J. Fluid Mech. 177, 133–166 (1987).
  • [87] K.M. Butler and B.F. Farrell, “Optimal Perturbations and Streak Spacing in Wall-Bounded Shear Flow,” Phys. Fluids A 5, 774–777 (1993).
  • [88] J.D. Swearingen and R.F. Blackwelder, “Instantaneous Streamwise Velocity Gradients in the Wall Region,” Bul. Am. Phys. Soc. 29, p. 1528 (1984).
  • [89] E.R. Corino and R.S. Brodkey, “A Visual Investigation of the Wall Region in Turbulent Flow,” J. Fluid Mech. 37, 1–30 (1969).
  • [90] R.E. Falco, “New Results, a Review and Synthesis of the Mechanism of Turbulence Production in Boundary Layers and Its Modification,” AIAA Paper No. 83?0377, New York, 1983.
  • [91] R.E. Falco, “A Coherent Structure Model of the Turbulent Boundary Layer and Its Ability to Predict Reynolds Number Dependence,” Phil. Trans. R. Soc. London A 336, 103–129 (1991).
  • [92] J.C. Klewicki, J.A. Murray, and R.E. Falco, “Vortical Motion Contributions to Stress Transport in Turbulent Boundary Layers,” Phys. Fluids 6, 277–286 (1994).
  • [93] G.L. Donohue, W.G. Tiederman, and M.M. Reischman, “Flow Visualization of the Near-Wall Region in a Drag-Reducing Channel Flow,” J. Fluid Mech. 56, 559–575 (1972).
  • [94] M.M. Reischman and W.G. Tiederman, “Laser-Doppler Anemometer Measurements in Drag-Reducing Channel Flows,” J. Fluid Mech. 70, 369–392 (1975).
  • [95] D.K. Oldaker and W.G. Tiederman, “Spatial Structure of the Viscous Sublayer in Drag-Reducing Channel Flows,” Phys. Fluids 20, no. 10, part II, S133–144 (1977).
  • [96] W.G. Tiederman, T.S. Luchik, and D.G. Bogard, “Wall-Layer Structure and Drag Reduction,” J. Fluid Mech. 156, 419–437 (1985).
  • [97] C.R. Smith and S.P. Metzler, “A Visual Study of the Characteristics, Formation, and Regeneration of Turbulent Boundary Layer Streaks,” in Developments in Theoretical and Applied Mechanics, vol. XI, eds. T.J. Chung and G.R. Karr, pp. 533– 543, University of Alabama, Huntsville, Alabama, 1982.
  • [98] C.R. Smith and S.P. Metzler, “The Characteristics of Low- Speed Streaks in the Near-Wall Region of a Turbulent Boundary Layer,” J. Fluid Mech. 129, 27–54 (1983).
  • [99] M. Gad-el-Hak and A.K.M.F. Hussain, “Coherent Structures in a Turbulent Boundary Layer. Part 1. Generation of ‘Artificial’ Bursts,” Phys. Fluids 29, 2124–2139 (1986).
  • [100] M. Gad-el-Hak and R.F. Blackwelder, “Simulation of Large- Eddy Structures in a Turbulent Boundary Layer,” AIAA J. 25, 1207–1215 (1987).
  • [101] M. Gad-el-Hak and P.R. Bandyopadhyay, “Reynolds Number Effects in Wall-Bounded Flows,” Appl. Mech. Rev. 47, pp. 307–365 (1994).
  • [102] M. Gad-el-Hak, Flow Control: Passive, Active, and Reactive Flow Management, second printing, Cambridge University Press, London, 2006.
  • [103] K.R. Sreenivasan, “A Unified View of the Origin and Morphology of the Turbulent Boundary Layer Structure,” in Turbulence Management and Relaminarisation, eds. H.W. Liepmann and R. Narasimha, pp. 37–61, Springer-Verlag, Berlin, 1988.
  • [104] X. Wu and P. Moin, “Direct Numerical Simulation of Turbulence in a Nominally Zero-Pressure-Gradient Flat-Plate Boundary Layer,” J. Fluid Mech. 630, pp. 5–41 (2009).
  • [105] M. Gad-el-Hak, “DNS of Turbulent Boundary Layers: the Breakthrough That Opened a Can of Worms,” CFD Letters 1(2), pp. ii–iv (2009).
  • [106] A.E. Alving, A.J. Smits, and J.H. Watmuff, “Turbulent Boundary Layer Relaxation from Convex Curvature,” J. Fluid Mech. 211, 529–556 (1990).
  • [107] G.L. Brown and A.S.W. Thomas, “Large Structure in a Turbulent Boundary Layer,” Phys. Fluids 20, no. 10, part II, S243–S252 (1997).
  • [108] P.R. Bandyopadhyay, “Large Structure with a Characteristic Upstream Interface in Turbulent Boundary Layers,” Phys. Fluids 23, 2326–2327 (1980).
  • [109] W.W. Willmarth and B.J. Tu, “Structure of Turbulence in the Boundary Layer Near the Wall,” Phys. Fluids 10, S134–S137 (1967).
  • [110] T.J. Black, “An Analytical Study of the Measured Wall Pressure Field under Supersonic Turbulent Boundary Layers,” NASA Contractor Report No. CR-888, Washington, D.C., 1988.
  • [111] J.O. Hinze, Turbulence, second edition, McGraw-Hill, New York, 1975.
  • [112] A.K. Praturi and R.S. Brodkey, “A Stereoscopic Visual Study of Coherent Structures in Turbulent Shear Flows,” J. Fluid Mech. 89, 251–272 (1978).
  • [113] A.S.W. Thomas and M. K. Bull, “On the Role of Wall- Pressure Fluctuations in Deterministic Motions in the Turbulent Boundary Layer,” J. Fluid Mech. 128, 283–322 (1983).
  • [114] M.S. Acarlar and C.R. Smith, “A Study of Hairpin Vortices in a Laminar Boundary Layer. Part 1. Hairpin Vortices Generated by a Hemisphere Protuberance,” J. Fluid Mech. 175, 1–41 (1987).
  • [115] M.S. Acarlar and C.R. Smith, “A Study of Hairpin Vortices in a Laminar Boundary Layer. Part 2. Hairpin Vortices Generated by Fluid Injection,” J. Fluid Mech. 175, 43–83 (1987).
  • [116] S.K. Robinson, “A Review of Vortex Structures and Associated Coherent Motions in Turbulent Boundary layers,” in Structure of Turbulence and Drag Reduction, ed. A. Gyr, pp. 23–50, Springer-Verlag, Berlin, 1990.
  • [117] S.J. Kline and N.H. Afgan, editors, Near-Wall Turbulence: 1988 Zoran Zarić Memorial Conference, Hemisphere, New York, 1990.
  • [118] M.T. Landahl, “A Wave-Guide Model for Turbulent Shear Flow,” J. Fluid Mech. 29, 441–459 (1967).
  • [119] M.T. Landahl, “A Note on an Algebraic Instability of Inviscid Parallel Shear Flows,” J. Fluid Mech. 98, 243–251 (1980).
  • [120] M.T. Landahl, “On Sublayer Streaks,” J. Fluid Mech. 212, 593–614 (1990).
  • [121] A.E. Perry and M.S. Chong, “On the Mechanism of Wall Turbulence,” J. Fluid Mech. 119, 173–217 (1982).
  • [122] A.E. Perry, S.M. Henbest, and M.S. Chong, “A Theoretical and Experimental Study of Wall Turbulence,” J. Fluid Mech. 165, 163–199, 1986.
  • [123] A.E. Perry, J.D. Li, S. Henbest, and I. Marusic, “The Attached Eddy Hypothesis in Wall Turbulence,” in Near-Wall Turbulence: 1988 Zoran Zarić Memorial Conference, eds. S.J. Kline and N.H. Afgan, pp. 715–735, Hemisphere, New York, 1990.
  • [124] J.D.A.Walker and S. Herzog, “Eruption Mechanisms for Turbulent Flows Near Walls,” in Transport Phenomena in Turbulent Flows, eds. M. Hirata and N. Kasagi, pp. 145–156, Hemisphere, New York, 1988.
  • [125] N. Aubry, P. Holmes, J.L. Lumley, and E. Stone, “The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer,” J. Fluid Mech. 192, 115–173 (1988).
  • [126] T.J. Hanratty, “A Conceptual Model of the Viscous Wall Region,” in Near-Wall Turbulence: 1988 Zoran Zarić Memorial Conference, eds. S.J. Kline and N.H. Afgan, pp. 81–103, Hemisphere, New York, 1990.
  • [127] G. Berkooz, P. Holmes, and J.L. Lumley, “Intermittent Dynamics in Simple Models of the Turbulent Boundary Layer,” J. Fluid Mech. 230, 75–95 (1991).
  • [128] W.V.R. Malkus, “Outline of a Theory of Turbulent Shear Flow,” J. Fluid Mech. 1, 521–539 (1956).
  • [129] W.V.R. Malkus, “Turbulent Velocity Profiles from Stability Criteria,” J. Fluid Mech. 90, 401–414 (1979).
  • [130] P. Bradshaw, “‘Inactive’ Motion and Pressure Fluctuations in Turbulent Boundary Layers,” J. Fluid Mech. 30, 241–258 (1967).
  • [131] Y. Nagano and M. Tagawa, “A Structural Turbulence Model for Triple Products of Velocity and Scalar,” J. Fluid Mech. 215, 639–657 (1990).
  • [132] P.R. Bandyopadhyay, and R. Balasubramanian, “A Vortex Model for Calculating Wall Pressure Fluctuations in Turbulent Boundary Layers,” in ASME Symposium on Flow Noise Modeling, Measurement and Control, eds. T.M. Farabee, W.L. Keith, and R.M. Lueptow, NCA-Vol. 15/FED-Vol. 168, pp. 13–24, New York, 1993.
  • [133] P.R. Bandyopadhyay, and R. Balasubramanian, “Vortex Reynolds Number in Turbulent Boundary Layers,” Theor. Comput. Fluid Dynamics 7, 101–117 (1995).
  • [134] P.R. Bandyopadhyay, and R. Balasubramanian, “Structural Modeling of the Wall Effects of Lorentz Force,” J. Fluids Eng. 118, 412–414 (1996).
  • [135] Th. Theodorsen, “Mechanism of Turbulence,” Proc. Second Midwestern Conf. on Fluid Mechanics, pp. 1–18, Ohio State University, Columbus, Ohio, 1952.
  • [136] Th. Theodorsen, “The Structure of Turbulence,” in 50 Jahre Grenzschichtsforschung (Ludwig Prandtl Anniversal Volume), eds. H. Görtler and W. Tollmien, pp. 55–62, Friedr. Vieweg und Sohn, Braunschweig, Germany, 1955.
  • [137] T.J. Black, “Some Practical Applications of a New Theory of Wall Turbulence,” Proc. 1966 Heat Transfer & Fluid Mechanics Institute, eds. M.A. Saad and J.A. Miller, pp. 366–386, Stanford University Press, Stanford, California, 1966.
  • [138] P.S. Klebanoff, K.D. Tidstrom, and L.M. Sargent, “The Three-Dimensional Nature of Boundary Layer Instability,” J. Fluid Mech. 12, 1–34 (1962).
  • [139] T.I. Williams, The History of Invention, Facts on File Publications, New York, 1987.
  • [140] R. Dennell, “The World’s Oldest Spears,” Nature 385, 27 February, 767–768 (1997).
  • [141] H. Thieme, “Lower Palaeolithic Hunting Spears from Germany,” Nature 385, 27 February, p. 807 (1997).
  • [142] L. Prandtl, “Über Flüssigkeitsbewegung bei sehr kleiner Reibung,” Proc. Third Int. Math. Cong., pp. 484–491, Heidelberg, Germany, 1904.
  • [143] G.V. Lachmann, editor, Boundary Layer and Flow Control, vols. 1 and 2, Pergamon Press, Oxford, Great Britain, 1961.
  • [144] B.S. Stratford, “An Experimental Flow With Zero Skin Friction Throughout Its Region of Pressure Rise,” J. Fluid Mech. 5, 17–35 (1959).
  • [145] R.H. Liebeck, “Design of Subsonic Airfoils for High Lift,” J. aircraft 15, pp. 547–561 (1978).
  • [146] J.J. Riley, M. Gad-el-Hak, and R.W. Metcalfe, “Compliant Coatings,” Annu. Rev. Fluid Mech. 20, 393–420 (1988).
  • [147] M. Gad-el-Hak, “Compliant Coatings: A Decade of Progress,” Appl. Mech. Rev. 49, no. 10, part 2, S1–S11 (1996).
  • [148] M.I. Hussein, M.J. Leamy, and M. Ruzzene, “Flow Stabilization by Subsurface Phonons,” Appl. Mech. Rev. 66, 040802.1–040802.38 (2014).
  • [149] M.I. Hussein, S. Biringen, O.R. Bilal, and A. Kucala, “Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook,” Proc. R. Soc. Lond. A 471, 20140928.1–20140928.19 (2015).
  • [150] K.J. Aström and R.M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, Princeton University Press, Princeton, New Jersey, 2008.
  • [151] J. Bernat, J. Kołota, S. Stępień, and P. Superczyńska, “Suboptimal Control of Nonlinear Continues-Time Locally Positive Systems Using Input-State Linearization and SDRE Approach,” Bull. Pol. Ac.: Tech. 66, 17–22 (2018).
  • [152] S.P. Wilkinson, “Interactive Wall Turbulence Control,” in Viscous Drag Reduction in Boundary Layers, eds. D.M. Bushnell and J.N. Hefner, pp. 479–509, AIAA, Washington, D.C., 1990.
  • [153] K.M.M. Alshamani, J.L. Livesey, and F.J. Edwards, “Excitation of the Wall Region by Sound in Fully Developed Channel Flow,” AIAA J. 20, 334–339 (1982).
  • [154] S.P. Wilkinson and R. Balasubramanian, “Turbulent Burst Control through Phase-Locked Surface Depressions,” AIAA Paper No. 85?0536, New York, 1985.
  • [155] D.M. Nosenchuck and M.K. Lynch, “The Control of Low- Speed Streak Bursting in Turbulent Spots,” AIAA Paper No. 85- 0535, New York, 1985.
  • [156] K.S. Breuer, J.H. Haritonidis, and M.T. Landahl, “The Control of Transient Disturbances in a Flat Plate Boundary Layer through Active Wall Motion,” Phys. Fluids A 1, 574–582 (1989).
  • [157] A. Kwong and A. Dowling, “Active Boundary Layer Control in Diffusers,” AIAA Paper No. 93?3255, Washington, D.C., 1993.
  • [158] W.C. Reynolds, “Sensors, Actuators, and Strategies for Turbulent Shear-Flow Control,” invited oral presentation at AIAA Third Flow Control Conference, 6–9 July, Orlando, Florida, 1993.
  • [159] J. Jacobs, R. James, C. Ratliff, and A. Glazer, “Turbulent Jets Induced by Surface Actuators,” AIAA Paper No. 93?3243, Washington, D.C., 1993.
  • [160] S.A. Jacobson and W.C. Reynolds, “Active Control of Boundary Layer Wall Shear Stress Using Self-Learning Neural Networks,” AIAA Paper No. 93?3272, AIAA, Washington, D.C., 1993.
  • [161] S.A. Jacobson and W.C. Reynolds, “Active Boundary Layer Control Using Flush-Mounted Surface Actuators,” Bul. Am. Phys. Soc. 38, p. 2197, (1993).
  • [162] S.A. Jacobson and W.C. Reynolds, “Active Control of Transition and Drag in Boundary Layers,” Bul. Am. Phy. Soc. 39, p. 1894 (1994).
  • [163] S.A. Jacobson and W.C. Reynolds, “An Experimental Investigation Towards the Active Control of Turbulent Boundary Layers,” Department of Mechanical Engineering Report No. TF-64, Stanford University, Stanford, California, 1995.
  • [164] S.A. Jacobson and W.C. Reynolds, “Active Control of Streamwise Vortices and Streaks in Boundary Layers,” J. Fluid Mech. 360, 179–211 (1998).
  • [165] X. Fan, L. Hofmann, and T. Herbert, “Active Flow Control with Neural Networks,” AIAA Paper No. 93?3273, Washington, D.C., 1993.
  • [166] R.D. James, J.W. Jacobs, and A. Glezer, “Experimental Investigation of a Turbulent Jet Produced by an Oscillating Surface Actuator,” Appl. Mech. Rev. 47, no. 6, part 2, S127–S1131 (1994).
  • [167] L.R. Keefe, “A MEMS-Based Normal Vorticity Actuator for Near-Wall Modification of Turbulent Shear Flows,” Proc. Workshop on Flow Control: Fundamentals and Practices, eds. J.-P. Bonnet, M. Gad-el-Hak and A. Pollard, pp. 1–21, 1–5 July, Institut d’Etudes Scientifiques des Cargese, Corsica, France, 1996.
  • [168] M. Gad-el-Hak, “Interactive Control of Turbulent Boundary Layers: A Futuristic Overview,” AIAA J. 32, 1753–1765 (1994).
  • [169] M. Gad-el-Hak, “Modern Developments in Flow Control,” Appl. Mech. Rev. 49, 365–379 (1996).
  • [170] J.L. Lumley, “Control of Turbulence,” AIAA Paper No. 96-0001, Washington, D.C., 1996.
  • [171] J.M. McMichael, “Progress and Prospects for Active Flow Control Using Microfabricated Electromechanical Systems (MEMS),” AIAA Paper No. 96?0306, Washington, D.C., 1996.
  • [172] M. Mehregany, “Overview of Microelectromechanical Systems,” invited oral presentation at AIAA Third Flow Control Conference, 6–9 July, Orlando, Florida, 1993.
  • [173] C.-M. Ho and Y.-C. Tai, “Review: MEMS and Its Applications for Flow Control,” J. Fluids Eng. 118, 437–447 (1996).
  • [174] P.R. Bandyopadhyay, “Review–Mean Flow in Turbulent Boundary Layers Disturbed to Alter Skin Friction,” J. Fluids Eng. 108, 127–140 (1986).
  • [175] J. Xu, S. Dong, M.R. Maxey, and G.E. Karniadakis, “Turbulent Drag Reduction by Constant Near-Wall Forcing,” J. Fluid Mech. 582, 79–101 (2007).
  • [176] Y. Li and Y. Zhou, “Drag Reduction in a Turbulent Boundary Layer Using Periodic Blowing Through One Array of Streamwise Slits,” in Proc. 15th European Turbulence Conference, ed. D. Lohse, tracking number 255, 25–28 August 2015.
  • [177] M. Gad-el-Hak and R.F. Blackwelder, “A Drag Reduction Method for Turbulent Boundary Layers,” AIAA Paper No. 87?0358, New York, 1987.
  • [178] M. Gad-el-Hak and R.F. Blackwelder, “Selective Suction for Controlling Bursting Events in a Boundary Layer,” AIAA J. 27, 308–314 (1989).
  • [179] R.F. Blackwelder and M. Gad-el-Hak, “Method and Apparatus for Reducing Turbulent Skin Friction,” United States Patent No. 4,932,612, 1990.
  • [180] R.F. Blackwelder and J.D. Swearingen, “The Role of Inflectional Velocity Profiles inWall Bounded Flows,” in Near-Wall Turbulence: 1988 Zoran Zarić Memorial Conference, eds. S.J. Kline and N.H. Afgan, pp. 268–288, Hemisphere, New York, 1990.
  • [181] J.B. Johansen and C.R. Smith, “The Effects of Cylindrical Surface Modifications on Turbulent Boundary Layers,” AIAA J. 24, 1081–1087 (1986).
  • [182] S.P. Wilkinson and B.S. Lazos, “Direct Drag and Hot-Wire Measurements on Thin-Element Riblet Arrays,” in Turbulence Management and Relaminarization, eds. H.W. Liepmann and R. Narasimha, pp. 121–131, Springer-Verlag, New York, 1987.
  • [183] S.P. Wilkinson, “Direct Drag Measurements on Thin-Element Riblets with Suction and Blowing,” AIAA Paper No. 88-3670-CP, Washington, D.C., 1988.
  • [184] H. Choi, P. Moin, and J. Kim, “Active Turbulence Control for Drag Reduction inWall-Bounded Flows,” J. Fluid Mech. 262, 75–110 (1994).
  • [185] P. Moin and T. Bewley, “Feedback Control of Turbulence,” Appl. Mech. Rev. 47, no. 6, part 2, S3–S13 (1994).
  • [186] F. Abergel and R. Temam, “On Some Control Problems in Fluid Mechanics,” Theor. Comput. Fluid Dyn. 1, 303–325 (1990).
  • [187] H. Choi, R. Temam, P. Moin, and J. Kim, “Feedback Control for Unsteady Flow and Its Application to the Stochastic Burgers Equation,” J. Fluid Mech. 253, 509–543 (1993).
  • [188] T.R. Bewley, P. Moin, and R. Temam, “Optimal and Robust Approaches for Linear and Nonlinear Regulation Problems in Fluid Mechanics,” AIAA Paper No. 97?1872, Reston, Virginia, 1997.
  • [189] T.R. Bewley, R. Temam, and M. Ziane, “A General Framework for Robust Control in Fluid Mechanics,” Center for Turbulence Research No. CTR-Manuscript-169, Stanford University, Stanford, California, 1998.
  • [190] S.S. Sritharan, editor, Optimal Control of Viscous Flow, SIAM, Philadelphia, Pennsylvania, 1998.
  • [191] J.L. Lumley, “Control of the Wall Region of a Turbulent Boundary Layer,” in Turbulence: Structure and Control, ed. J.M. McMichael, pp. 61–62, 1–3 April, Ohio State University, Columbus, Ohio, 1991.
  • [192] J.L. Lumley, “Control of Turbulence,” AIAA Paper No. 96?0001, Washington, D.C., 1996.
  • [193] H. Choi, P. Moin, and J. Kim, “Turbulent Drag Reduction: Studies of Feedback Control and Flow Over Riblets,” Department of Mechanical Engineering Report No. TF-55, Stanford University, Stanford, California, 1992.
  • [194] M. Gad-el-Hak, “Frontiers of Flow Control,” in Flow Control: Fundamentals and Practices, eds. M. Gad-el-Hak, A. Pollard and J.-P. Bonnet, pp. 109–153, Springer-Verlag, Berlin, 1998.
  • [195] P. Perrier, “Multiscale Active Flow Control,” in Flow Control: Fundamentals and Practices, eds. M. Gad-el-Hak, A. Pollard and J.-P. Bonnet, pp. 275–334, Springer-Verlag, Berlin, 1998.
  • [196] G. Berkooz, M. Fisher, and M. Psiaki, “Estimation and Control of Models of the TurbulentWall Layer,” Bul. Am. Phys. Soc. 38, p. 2197 (1993).
  • [197] M. Gad-el-Hak, “Innovative Control of Turbulent Flows,” AIAA Paper No. 93?3268, Washington, D.C., 1993.
  • [198] D.C. Wadsworth, E.P. Muntz, R.F. Blackwelder, and G.R. Shiflett, “Transient Energy Release Pressure Driven Microactuators for Control of Wall-Bounded Turbulent Flows,” AIAA Paper No. 93?3271, AIAA, Washington, D.C., 1993.
  • [199] J.F. Lindner and W.L. Ditto, “Removal, Suppression and Control of Chaos by Nonlinear Design,” Appl. Mech. Rev. 48, 795–808 (1995).
  • [200] S.P. Banks, Control Systems Engineering, Prentice-Hall International, Englewood Cliffs, New Jersey, 1986.
  • [201] I.R. Petersen and A.V. Savkin, Robust Kalman Filtering for Signals and Systems with Large Uncertainties, Birkhäuser, Boston, Massachusetts, 1999.
  • [202] H. Górecki and M. Zaczyk, “Determination of Optimal Controllers. Comparison of Two Methods for Electric Network Chain,” Bull. Pol. Ac.: Tech. 66, 267–273 (2018).
  • [203] N. Aubry, “Use of Experimental Data for an Efficient Description of Turbulent Flows,” Appl. Mech. Rev. 43, S240–S245 (1990).
  • [204] Y. Pomeau and P. Manneville, “Intermittent Transition to Turbulence in Dissipative Dynamical Systems,” Commun. Math. Phys. 74, 189–197 (1980).
  • [205] S.L. Brunton and B.R. Noack, “Closed-Loop Turbulence Control: Progress and Challenges,” Appl. Mech. Rev. 67(5), 050801 (2015).
  • [206] R. Grappin and J. Léorat, “Lyapunov Exponents and the Dimension of Periodic Incompressible Navier–Stokes Flows: Numerical Measurements,” J. Fluid Mech. 222, 61–94 (1991).
  • [207] A.E. Deane and L. Sirovich, “A Computational Study of Rayleigh-Bénard Convection. Part 1. Rayleigh-Number Scaling,” J. Fluid Mech. 222, 231–250 (1991).
  • [208] L. Sirovich and A.E. Deane, “A Computational Study of Rayleigh–Bénard Convection. Part 2. Dimension Considerations,” J. Fluid Mech. 222, 251–265 (1991).
  • [209] L.R. Keefe, P. Moin, and J. Kim, “The Dimension of Attractors Underlying Periodic Turbulent Poiseuille Flow,” J. Fluid Mech. 242, 1–29 (1992).
  • [210] T.B. Fowler, “Application of Stochastic Control Techniques to Chaotic Nonlinear Systems,” IEEE Trans. Autom. Control 34, 201–205 (1989).
  • [211] A. Hübler and E. Lüscher, “Resonant Stimulation and Control of Nonlinear Oscillators,” Naturwissenschaften 76, 67–69 (1989).
  • [212] B. Huberman, “The Control of Chaos,” Proc. Workshop on Applications of Chaos, 4–7 December, San Francisco, California, 1990.
  • [213] B.A. Huberman and E. Lumer, “Dynamics of Adaptive Systems,” IEEE Trans. Circuits Syst. 37, 547–550 (1990).
  • [214] E. Ott, C. Grebogi, and J.A. Yorke, “Controlling Chaos,” Phys. Rev. Lett. 64, 1196–1199 (1990).
  • [215] E. Ott, C. Grebogi, and J.A. Yorke, “Controlling Chaotic Dynamical Systems,” in Chaos: Soviet–American Perspectives on Nonlinear Science, ed. D.K. Campbell, pp. 153–172, American Institute of Physics, New York, 1990.
  • [216] T. Shinbrot, E. Ott, C. Grebogi, and J.A. Yorke, “Using Chaos to Direct Trajectories to Targets,” Phys. Rev. Lett. 65, 3215–3218 (1990).
  • [217] T. Shinbrot, W. Ditto, C. Grebogi, E. Ott, M. Spano, and J.A. Yorke, “Using the Sensitive Dependence of Chaos (the “Butterfly Effect”) to Direct Trajectories in an Experimental Chaotic System,” Phys. Rev. Lett. 68, 2863–2866 (1992).
  • [218] T. Shinbrot, C. Grebogi, E. Ott, and J.A. Yorke, “Using Chaos to Target Stationary States of Flows,” Phys. Lett. A 169, 349–354, 1992.
  • [219] T. Shinbrot, E. Ott, C. Grebogi, and J.A. Yorke, “Using Chaos to Direct Orbits to Targets in Systems Describable by a One- Dimensional Map,” Phys. Rev. A 45, 4165–4168 (1992).
  • [220] F.J. Romeiras, C. Grebogi, E. Ott, and W.P. Dayawansa, “Controlling Chaotic Dynamical Systems,” Physica D 58, 165–192 (1992).
  • [221] T. Shinbrot, L. Bresler, and J.M. Ottino, “Manipulation of Isolated Structures in Experimental Chaotic Fluid Flows,” Exp. Thermal & Fluid Sci. 16, 76–83 (1998).
  • [222] T. Shinbrot, C. Grebogi, E. Ott, and J.A. Yorke, “Using Small Perturbations to Control Chaos,” Nature 363, 411–417 (1993).
  • [223] T. Shinbrot, “Chaos: Unpredictable Yet Controllable?” Nonlinear Science Today 3, 1–8 (1993).
  • [224] T. Shinbrot, “Progress in the Control of Chaos,” Adv. Physics 44, 73–111 (1995).
  • [225] T. Shinbrot, “Chaos, Coherence and Control,” in Flow Control: Fundamentals and Practices, eds. M. Gad-el-Hak, A. Pollard and J.-P. Bonnet, pp. 501–527, Springer-Verlag, Berlin, 1998.
  • [226] E. J. Kostelich, C. Grebogi, E. Ott, and J.A. Yorke, “Targeting from Time Series,” Bul. Am. Phys. Soc. 38, p. 2194 (1993).
  • [227] W.L. Ditto, S.N. Rauseo, and M.L. Spano, “Experimental Control of Chaos,” Phys. Rev. Lett. 65, 3211–3214 (1990).
  • [228] W.L. Ditto and L.M. Pecora, “Mastering Chaos,” Scientific American 269, August, 78–84 (1993).
  • [229] A. Garfinkel, M.L. Spano, W.L. Ditto, and J.N. Weiss, “Controlling Cardiac Chaos,” Science 257, 1230–1235 (1992).
  • [230] D. Auerbach, C. Grebogi, E. Ott, and J.A. Yorke, “Controlling Chaos in High Dimensional Systems,” Phys. Rev. Lett. 69, 3479–3482 (1992).
  • [231] E.J. Kostelich, C. Grebogi, E. Ott, and J.A. Yorke, “Higher- Dimensional Targeting,” Phys. Rev. E 47, 305–310 (1993).
  • [232] Y.-C. Lai, M. Deng, and C. Grebogi, “Controlling Hamiltonian Chaos,” Phys. Rev. E 47, 86–92 (1993).
  • [233] Y.-C. Lai, T. Tél, and C. Grebogi, “Stabilizing Chaotic-Scattering Trajectories Using Control,” Phys. Rev. E 48, 709–717 (1993).
  • [234] Y.-C. Lai and C. Grebogi, “Synchronization of Chaotic Trajectories Using Control,” Phys. Rev. E 47, 2357–2360 (1993).
  • [235] S. Hayes, C. Grebogi, and E. Ott, “Communicating with Chaos,” Phys. Rev. Lett. 70, 3031–3040 (1994).
  • [236] S. Hayes, C. Grebogi, E. Ott, and A. Mark, “Experimental Control of Chaos for Communication,” Phys. Rev. Lett. 73, 1781–1784 (1994).
  • [237] Y.-C. Lai, C. Grebogi, and T. Tél, “Controlling Transient Chaos in Dynamical Systems,” in Towards the Harnessing of Chaos, ed. M. Yamaguchi, Elsevier, Amsterdam, the Netherlands, 1994.
  • [238] C.-C. Chen, E. E. Wolf, and H.-C. Chang, “Low-Dimensional Spatiotemporal Thermal Dynamics on Nonuniform Catalytic Surfaces,” J. Phys. Chemistry 97, 1055–1064 (1993).
  • [239] F. Qin, E.E. Wolf, and H.-C. Chang, “Controlling Spatiotemporal Patterns on a Catalytic Wafer,” Phys. Rev. Lett. 72, 1459–1462 (1994).
  • [240] D. Auerbach, “Controlling Extended Systems of Chaotic Elements,” Phys. Rev. Lett. 72, 1184–1187 (1994).
  • [241] L.R. Keefe, “Two Nonlinear Control Schemes Contrasted in a Hydrodynamic Model,” Phys. Fluids A 5, 931–947 (1993).
  • [242] L.R. Keefe, “Drag Reduction in Channel Flow Using Nonlinear Control,” AIAA Paper No. 93?3279, Washington, D.C., 1993.
  • [243] E. Lüscher and A. Hübler, “Resonant Stimulation of Complex Systems,” Helv. Phys. Acta 62, 544–551 (1989).
  • [244] J. Singer, Y.-Z. Wang, and H.H. Bau, “Controlling a Chaotic System,” Phys. Rev. Lett. 66, 1123–1125 (1991).
  • [245] Y. Wang, J. Singer, and H.H. Bau, “Controlling Chaos in a Thermal Convection Loop,” J. Fluid Mech. 237, 479–498 (1992).
  • [246] J. Tang and H.H. Bau, “Stabilization of the No-Motion State in Rayleigh–Bénard Convection Through the Use of Feedback Control,” Phys. Rev. Lett. 70, 1795–1798 (1993).
  • [247] J. Tang and H.H. Bau, “Feedback Control Stabilization of the No-Motion State of a Fluid Confined in a Horizontal Porous Layer Heated from Below,” J. Fluid Mech. 257, 485–505 (1993).
  • [248] H.H. Hu and H.H. Bau, “Feedback Control to Delay or Advance Linear Loss of Stability in Planar Poiseuille Flow,” Proc. Roy. Soc. Lond. A 447, 299–312 (1994).
  • [249] T.C. Corke, M.N. Glauser, and G. Berkooz, “Utilizing Low- Dimensional Dynamical Systems Models to Guide Control Experiments,” Appl. Mech. Rev. 47, no. 6, part 2, S132–S138 (1994).
  • [250] B.D. Coller, P. Holmes, and J.L. Lumley, “Control of Bursting in Boundary Layer Models,” Appl. Mech. Rev. 47, no. 6, part 2, S139–S143 (1994).
  • [251] B.D. Coller, P. Holmes, and J.L. Lumley, “Control of Noisy Heteroclinic Cycles,” Physica D 72, 135–160 (1994).
  • [252] T. Shinbrot and J.M. Ottino, “Geometric Method to Create Coherent Structures in Chaotic Flows,” Phys. Rev. Lett. 71, 843–846 (1993).
  • [253] T. Shinbrot and J.M. Ottino, “Using Horseshoes to Create Coherent Structures in Chaotic Fluid Flows,” Bul. Am. Phys. Soc. 38, p. 2194 (1993).
  • [254] T. Shinbrot, L. Bresler, and J.M. Ottino, “Manipulation of Isolated Structures in Experimental Chaotic Fluid Flows,” Exp. Thermal & Fluid Sci. 16, 76–83 (1998).
  • [255] R.R. Yager and L.A. Zadeh, editors, An Introduction to Fuzzy Logic Applications in Intelligent Systems, Kluwer Academic, Boston, Massachusetts, 1992.
  • [256] B. Bouchon-Meunier, R.R. Yager, and L.A. Zadeh, editors, Fuzzy Logic and Soft Computing, World Scientific, Singapore, 1995.
  • [257] B. Bouchon-Meunier, R.R. Yager, and L.A. Zadeh, editors, Advances in Intelligent Computing–IPMU’94, Lecture Notes in Computer Science, vol. 945, Springer-Verlag, Berlin, 1995.
  • [258] J.-S.R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice Hall, Upper Saddle River, New Jersey, 1997.
  • [259] A. Noor and C.C. Jorgensen, “A Hard Look at Soft Computing,” Aerospace America 34, September, 34–39 (1996).
  • [260] J. Ouellette, “Electronic Noses Sniff Out New Markets,” Industrial Physicist 5, no. 1, 26–29 (1999).
  • [261] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, Massachusetts, 1989.
  • [262] L. Davis, editor, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.
  • [263] J.H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, Massachusetts, 1992.
  • [264] M.M. Nelson and W. T. Illingworth, A Practical Guide to Neural Nets, Addison-Wesley, Reading, Massachusetts, 1991.
  • [265] P.J. Antsaklis, “Control Theory Approach,” in Mathematical Approaches to Neural Networks, ed. J.G. Taylor, pp. 1–23, Elsevier, Amsterdam, 1993.
  • [266] W.E. Faller, S.J. Schreck, and M.W. Luttges, “Real-Time Prediction and Control of Three-Dimensional Unsteady Separated Flow Fields Using Neural Networks,” AIAA Paper No. 94?0532, Washington, D.C., 1994.
  • [267] S.J. Schreck, W.E. Faller, and M.W. Luttges, “Neural Network Prediction of Three-Dimensional Unsteady Separated Flow Fields,” J. Aircraft 32, 178–185 (1995).
  • [268] M.H. Kawthar-Ali and M. Acharya, “Artificial Neural Networks for Suppression of the Dynamic-Stall Vortex over Pitching Airfoils,” AIAA Paper No. 96?0540, Washington, D.C., 1996.
  • [269] C. Lee, C., J. Kim, D. Babcock, and R. Goodman, “Application of Neural Networks to Turbulence Control for Drag Reduction,” Phys. Fluids 9, 1740–1747 (1997).
  • [270] R. King, R., ed., Active Flow Control, Springer-Verlag, Berlin, 2007.
  • [271] R. King, R., ed., Active Flow Control II, Springer-Verlag, Berlin, 2011.
  • [272] R. King, R., ed., Active Flow and Combustion Control, Springer- Verlag, Berlin, 2015.
  • [273] R. King, R., ed., Active Flow and Combustion Control II, Springer-Verlag, Berlin, 2019.
  • [274] K.S.G. Krishnan, O. Bertram, and O. Seibel, “Review of Hybrid Laminar Flow Control Systems,” Prog. Aerosp. Sci. 93, 24–52 (2017).
  • [275] V.I. Kornilov and A.V. Boiko, “Advances and Challenges in Periodic Forcing of the Turbulent Boundary Layer on a Body of Revolution,” Prog. Aerosp. Sci. 98, 57–73 (2018).
  • [276] J. Kim, “Control of Turbulent Boundary Layers,” Phys. Fluids 15, 1093–1105 (2003).
  • [277] J. Kim, “Physics and Control of Wall Turbulence for Drag Reduction,” Phil. Trans. R. Soc. A 369, 1396–1411 (2011).
  • [278] K. Iwamoto, K. Fukagata, N. Kasagi, and Y. Suzuki, “Friction Drag Reduction Achievable by Near-Wall Turbulence Manipulation at High Reynolds Number,” Phys. Fluids 17, 011702 (2005).
  • [279] S. Bagheri and D.S. Henningson, “Transition Delay Using Control Theory,” Phil. Trans. R. Soc. A 369, 1365–1381 (2011).
  • [280] B.A. Belson, O. Semeraro, C.W. Rowley, and D.S. Henningson, “Feedback Control of Instabilities in the Two-Dimensional Blasius Boundary Layer: The Role of Sensors and Actuators,” Phys. Fluids 25, 054106 (2013).
  • [281] N. Fabbiane, O. Semeraro, S. Bagheri, and D.S. Henningson “Adaptive and Model-Based Control Theory Applied to Convectively Unstable Flows,” Appl. Mech. Rev. 66, 060801 (2014).
  • [282] B.J. McKeon, “The Engine Behind (Wall) Turbulence: Perspectives on Scale Interactions,” J. Fluid Mech. 817, P1.1–P1.86 (2017).
  • [283] J. Jiménez, “Coherent Structures in Wall-Bounded Turbulence,” J. Fluid Mech. 842, P1.1–P1.100 (2018).
  • [284] D. Büche, P. Stoll, R. Dornberger, and P. Koumoutsakos, “Multiobjective Evolutionary Algorithm for the Optimization of Noisy Combustion Processes,” IEEE T. Syst. Man Cy. C 32, 460–473 (2002).
  • [285] N. Hansen, S.D. Müller, and P. Koumoutsakos, “Reducing the Time Complexity of the Derandomized Evolution Strategy With Covariance Matrix Adaptation (CMA-ES),” Evol. Comput. 11, 1–18 (2003).
  • [286] T. Duriez, S.L. Brunton, and B.R. Noack, Machine Learning Control–Taming Nonlinear Dynamics and Turbulence, Springer International Publishing, Switzerland, 2016.
  • [287] B.R. Noack, “Closed-Loop Turbulence Control–From Human to Machine Learning,” in Proc. 4th Symposium on Fluid- Structure-Sound Interactions and Control, eds. Y. Zhou, M. Kimura, G. Peng, A.D. Lucey, and L. Huang, pp. 23–32, Springer, Singapore, 2017.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cf4fbcc-9744-4782-b7ce-7679c32566ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.