PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Seismic rocking effects on a mine tower under induced and natural earthquakes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent research in engineering seismology demonstrated that in addition to three translational seismic excitations along x, y and z axes, one should also consider rotational components about these axes when calculating design seismic loads for structures. The objective of this paper is to present the results of a seismic response numerical analysis of a mine tower (also called in the literature a headframe or a pit frame). These structures are used in deep mining on the ground surface to hoist output (e.g. copper ore or coal). The mine towers belong to the tall, slender structures, for which rocking excitations may be important. In the numerical example, a typical steel headframe 64 m high is analysed under two records of simultaneous rocking and horizontal seismic action of an induced mine shock and a natural earthquake. As a result, a complicated interaction of rocking seismic effects with horizontal excitations is observed. The contribution of the rocking component may sometimes reduce the overall seismic response, but in most cases, it substantially increases the seismic response of the analysed headframe. It is concluded that in the analysed case of the 64 m mining tower, the seismic response, including the rocking ground motion effects, may increase up to 31% (for natural earthquake ground motion) or even up to 135% (for mining-induced, rockburst seismic effects). This means that not only in the case of the design of very tall buildings or industrial chimneys but also for specific yet very common structures like mine towers, including the rotational seismic effects may play an important role.
Rocznik
Strony
410--420
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
  • Faculty of Civil Engineering and Architecture, Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland
autor
  • Faculty of Civil Engineering and Architecture, Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland
  • Faculty of Civil Engineering and Architecture, Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland
Bibliografia
  • [1] Varadharajan S, Sehgal VK, Saini B. Determination of inelastic seismic demands of RC moment resisting setback frames. Arch Civ Mech Eng. 2013. https:// doi. org/ 10. 1016/j. acme. 2013. 02. 006.
  • [2] Zhang Z, Zhang S-N, Deng E-F, Zhou T-T, Yi Y, He H, et al. Experimental study on seismic performance of double-level yielding buckling-restrained braced concrete frames. Arch Civ Mech Eng. 2020. https:// doi. org/ 10. 1007/ s43452- 020- 00049-7.
  • [3] CEN. EN 1998–1:2004 Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings. 2004.
  • [4] Jankowski R, Wilde K, Fujino Y. Pounding of superstructure segments in isolated elevated bridge during earthquakes. Earthq Eng Struct Dyn. 1998. https:// doi. org/ 10. 1002/ (SICI) 1096-9845(199805) 27:5% 3c487:: AID- EQE738% 3e3.0. CO;2-M.
  • [5] Dulińska J. In situ investigations of dynamic response of earth dam to non-uniform kinematic excitation. Arch Civ Eng. 2006;52:37–58.
  • [6] Guéguen P, Astorga A. The torsional response of civil engineering structures during earthquake from an observational point of view. Sensors. 2021. https:// doi. org/ 10. 3390/ s2102 0342.
  • [7] Trifunac MD. A note on rotational components of earthquake motions on ground surface for incident body waves. Int J Soil Dyn Earthq Eng. 1982. https:// doi. org/ 10. 1016/ 0261- 7277(82) 90009-2.
  • [8] Castellani A, Boffi G. Rotational components of the surface ground motion during an earthquake. Earthq Eng Struct Dyn. 1986. https:// doi. org/ 10. 1002/ eqe. 42901 40506.
  • [9] Castellani A, Zembaty Z. Stochastic modeling of seismic surface rotations. Nat Hazards. 1994. https:// doi. org/ 10. 1007/ BF006 43451.
  • [10] Zembaty Z. Tutorial on surface rotations from wave passage effects: stochastic spectral approach. Bull Seismol Soc Am. 2009. https:// doi. org/ 10. 1785/ 01200 80102.
  • [11] Basu D, Whittaker AS, Constantinou MC. Estimating rotational components of ground motion using data recorded at a single station. J Eng Mech. 2012. https:// doi. org/ 10. 1061/ (ASCE) EM. 1943- 7889. 00004 08.
  • [12] Basu D, Whittaker AS, Constantinou MC. Extracting rotational components of earthquake ground motion using data recorded at multiple stations. Earthq Eng Struct Dyn. 2013. https:// doi. org/ 10. 1002/ eqe. 2233.
  • [13] Falamarz-Sheikhabadi MR, Ghafory-Ashtiany M. Approximate formulas for rotational effects in earthquake engineering. J Seismol. 2012. https:// doi. org/ 10. 1007/ s10950- 012- 9273-z.
  • [14] Nigbor RL. Six-degree-of-freedom ground-motion measurement. Bull Seismol Soc Am. 1994;84:1665–9.
  • [15] Takeo M. Ground rotational motions recorded in near-source region of earthquakes. Geophys Res Lett. 1998. https:// doi. org/ 10. 1029/ 98GL0 0511.
  • [16] Zembaty Z, Mutke G, Nawrocki D, Bobra P. Rotational ground-motion records from induced seismic events. Seismol Res Lett. 2017. https:// doi. org/ 10. 1785/ 02201 60131.
  • [17] Mutke G, Lurka A, Zembaty Z. Prediction of rotational ground motion for mining-induced seismicity—case study from Upper Silesian Coal Basin, Poland. Eng Geol. 2020. https:// doi. org/ 10. 1016/j. enggeo. 2020. 105767.
  • [18] Fuławka K, Pytel W, Pałac-Walko B. Near-field measurement of six degrees of freedom mining-induced tremors in lower Silesian Copper Basin. Sensors. 2020. https:// doi. org/ 10. 3390/ s2023 6801.
  • [19] Bernauer F, Behnen K, Wassermann J, Egdorf S, Igel H, Donner S, et al. Rotation, strain, and translation sensors performance tests with active seismic sources. Sensors. 2021. https:// doi. org/ 10. 3390/ s2101 0264.
  • [20] Bońkowski PA, Zembaty Z, Minch MY. Time history response analysis of a slender tower under translational-rocking seismic excitations. Eng Struct. 2018. https:// doi. org/ 10. 1016/j. engst ruct. 2017. 11. 042.
  • [21] Newmark NM, Rosenblueth E. Fundamentals of earthquake engineering. Englewood Cliffs: Prentice-Hall; 1971.
  • [22] Perron V, Hollender F, Mariscal A, Theodoulidis N, Andreou C, Bard P-Y, et al. Accelerometer, velocimeter dense-array, and rotation sensor datasets from the Sinaps@ postseismic survey (Cephalonia 2014–2015 Aftershock Sequence). Seismol Res Lett. 2018. https:// doi. org/ 10. 1785/ 02201 70125.
  • [23] Bońkowski PA, Zembaty Z, Minch MY. Engineering analysis of strong ground rocking and its effect on tall structures. Soil Dyn Earthq Eng. 2019. https:// doi. org/ 10. 1016/j. soild yn. 2018. 10. 026.
  • [24] Jaśkiewicz K, Pytel W. Shaft tower behaviour in typical seismic load conditions associated with copper ore exploitation in the foresudetic monocline. In: Potvin Y, Hudyma M, editors. Perth. Australian Centre for Geomechanics; 2005. p. 641–4.
  • [25] Tatara T, Pachla F, Kuboń P. Experimental and numerical analysis of an industrial RC tower. Bull Earthq Eng. 2017. https:// doi. org/ 10. 1007/ s10518- 016- 0053-y.
  • [26] Sokol M, Ároch R, Lamperová K, Marton M, García-Sanz-Calcedo J. Parametric analysis of rotational effects in seismic design of tall structures. Appl Sci. 2021. https:// doi. org/ 10. 3390/ app11 020597.
  • [27] Zembaty Z, Kokot S, Bozzoni F, Scandella L, Lai CG, Kuś J, et al. A system to mitigate deep mine tremor effects in thedesign of civil infrastructure. Int J Rock Mech Min Sci. 2015. https:// doi. org/ 10. 1016/j. ijrmms. 2015. 01. 004.
  • [28] Worden CB, Gerstenberger MC, Rhoades DA, Wald DJ. Probabilistic relationships between ground-motion parameters and modified Mercalli intensity in California. Bull Seismol Soc Am. 2012. https:// doi. org/ 10. 1785/ 01201 10156.
  • [29] Dowding CH. Construction vibrations. Upper Saddle River: Prentice Hall; 1996.
  • [30] Computers and Structures, Inc. SAP2000 [Internet]. Walnut Creek, California, USA. 2019. www. csiam erica. com. Accessed 3 Feb 2020.
  • [31] Chopra AK. Dynamics of structures: theory and applications to earthquake engineering. Prentice Hall: Pearson Education Limited; 2012.
  • [32] Sbaa S, Hollender F, Perron V, Imtiaz A, Bard P-Y, Mariscal A, et al. Analysis of rotation sensor data from the SINAPS@ Kefalonia (Greece) post-seismic experiment-link to surface geology and wavefield characteristics. Earth Planets Space. 2017. https:// doi. org/ 10. 1186/ s40623- 017- 0711-6.
  • [33] Bońkowski P, Zembaty Z, Minch M (2018) 6-dof strong ground motion data records from Kefalonia Island (November 8th 2014, MMI = VII and November 17th 2015, MMI = V). Dataset: https:// data. mende ley. com/ datas ets/ n3tgf n7xj8/1. Accessed 3 Feb 2020.
  • [34] Bońkowski PA. rotational effects for slender building structures under seismic excitations. PhD Thesis. Opole; Feb 14, 2018.
  • [35] Falamarz-Sheikhabadi MR. Simplified relations for the application of rotational components to seismic design codes. Eng Struct. 2014. https:// doi. org/ 10. 1016/j. engst ruct. 2013. 10. 035.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cf320fe-f015-4ed8-a25a-e7f1c80f2909
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.