PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of irreversible susceptibility and elastic recurrence of asphalts modified with waste plastomers in MSCR study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Prognozowanie nieodwracalnej podatności i nawrotu sprężystego asfaltów modyfikowanych plastomerami odpadowymi w badaniu MSCR
Języki publikacji
EN PL
Abstrakty
EN
This paper evaluates the possibility of predicting the microstructure characteristics of the irreversible part of the susceptibility modulus and the percentage recurrence in the MSCR test by means of basic asphalt properties. Seven variables were controlled in the research. Two types of asphalt 20/30 and 70/100 and two types of waste plastomer were used for the research. The entire research process was governed by the Plackett-Burman plan. The results were enriched by microstructure analysis of the waste plastomer dispersion in asphalt. As a result, it was found that the effect of microstructure on the irreversible part of the susceptibility modulus and percentage recurrence was not significant. In contrast, the mixing process significantly influenced the dispersion state of the plastomer particles in the asphalt. With the MARS technique, it has been possible to relate basic asphalt characteristics such as penetration, softening temperature, fracture temperature and dynamic viscosity to the irreversible part of the susceptibility modulus and percentage recurrence with efficiency expressed by a determination coefficient of R2=99%. It was also pointed out that the type of plastomer plays a significant role in shaping the percentage of asphalt conversion.
PL
W artykule dokonano oceny możliwości prognozy charakterystyk mikrostruktury nieodwracalnej części modułu podatności i procentowego nawrotu w badaniu MSCR za pomocą podstawowych właściwości asfaltu. W badaniach poddano kontrolowaniu 7 zmiennych. W ramach badania zastosowano dwa typy asfaltów 20/30 i 70/100 oraz dwa rodzaje plastomeru odpadowego. Cały proces badawczy został podporządkowany planowi Placketta-Burmana. Rezultaty wzbogacono o analizę mikrostruktury dyspersji plastomeru odpadowego w asfalcie. W rezultacie stwierdzono, że wpływ mikrostruktury na nieodwracalną część modułu podatności i procentowego nawrotu nie był znaczący. Natomiast proces mieszania istotnie wpływał na stan rozproszenia cząstek plastomeru w asfalcie. Dzięki technice MARS udało się powiązać podstawowe cechy asfaltu, takie jak penetracja, temperatura mięknienia, temperatura łamliwości oraz lepkość dynamiczna z nieodwracalną częścią modułu podatności i procentowym nawrotem ze skutecznością wyrażoną przez współczynnik determinacji R2=99%. Wskazano również, że rodzaj plastomeru odgrywa znaczącą rolę w kształtowaniu wartości procentowego nawrotu asfaltu.
Rocznik
Strony
533--548
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Transportation Engineering, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce
  • Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Transportation Engineering, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce
  • Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Transportation Engineering, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce
  • TRAKT, 1 Szczukowskie Górki St., 26-065 Piekoszów
  • Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Transportation Engineering, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce
Bibliografia
  • 1. Christensen D.W., Bonaquist R.: Use of Strength Tests for Evaluating the Rut Resistance of Asphalt Concrete. Journal of the Association of Asphalt Paving Technologists, 71, 2002, 692–711
  • 2. Nizamuddin S., Boom Y.J., Giustozzi F.: Sustainable Polymers from Recycled Waste Plastics and Their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers, 13, 19, 3242, 2021, DOI: 10.3390/polym13193242
  • 3. Iwański M., Chomicz-Kowalska A., Mazurek G., Buczyński P., Cholewińska M., Iwański M.M., Maciejewski K., Ramiączek P.: Effects of the Water-Based Foaming Process on the Basic and Rheological Properties of Bitumen 70/100. Materials, 14, 11, 2803, 2021, DOI: 10.3390/ma14112803
  • 4. Zhu J., Birgisson B., Kringos N.: Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 2014, 18–38, DOI: 10.1016/j.eurpolymj.2014.02.005
  • 5. Read J., Whiteoak D., Hunter R.N.: The Shell Bitumen handbook, 5th edition. London, Thomas Telford Publishing, 2003
  • 6. Dong F., Zhao W., Zhang Y., Wei J., Fan W., Yu Y., Wang Z.: Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt. Construction and Building Materials, 62, 2014, 1–7, DOI: 10.1016/j.conbuildmat.2014.03.018
  • 7. Airey G.: Rheological properties of styrene butadiene styrene polymer modified road bitumens⋆. Fuel, 82, 14, 2003, 1709–1719, DOI: 10.1016/S0016-2361(03)00146-7
  • 8. Li B., Li X., Kundwa M.J., Li Z., Wei D.: Evaluation of the adhesion characteristics of material composition for polyphosphoric acid and SBS modified bitumen based on surface free energy theory. Construction and Building Materials, 266, 121022, 2021, DOI: 10.1016/j.conbuildmat.2020.121022
  • 9. Padhan R.K., Sreeram A.: Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives. Construction and Building Materials, 188, 2018, 772–780, DOI: 10.1016/j.conbuildmat.2018.08.155
  • 10. Airey G.D.: Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, 16, 8, 2002, 473–487, DOI: 10.1016/S0950-0618(02)00103-4
  • 11. Mazurek G., Šrámek J., Buczyński P.: Composition Optimisation of Selected Waste Polymer-Modified Bitumen. Materials, 15, 24, 8714, 2022, DOI: 10.3390/ma15248714
  • 12. Singh B., Kumar L., Gupta M., Chauhan G.S.: Polymer-modified bitumen of recycled LDPE and maleated bitumen. Journal of Applied Polymer Science, 127, 1, 2013, 67–78, DOI: 10.1002/app.36810
  • 13. Khakimullin Y.N.: Properties of Bitumens Modified by Thermoplastic Elastomers. Mechanics of Composite Materials, 36, 5, 2000, 417–422, DOI: 10.1023/A:1026659520096
  • 14. Airey G.D.: Styrene butadiene styrene polymer modification of road bitumens. Journal of Materials Science, 39, 3, 2004, 951–959, DOI: 10.1023/B:JMSC.0000012927.00747.83
  • 15. Giavarini C., De Filippis P., Santarelli M.L., Scarsella M.: Production of stable polypropylene-modified bitumens. Fuel, 75, 6, 1996, 681–686, DOI: 10.1016/0016-2361(95)00312-6
  • 16. Pyshyev S., Gunka V., Grytsenko Y., Bratychak M.: Polymer Modified Bitumen: Review. Chemistry & Chemical Technology, 10, 4s, 2016, 631–636, DOI: 10.23939/chcht10.04si.631
  • 17. Liu P., Lu K., Li J., Wu X., Qian L., Wang M., Gao S.: Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates. Journal of Hazardous Materials, 384, 121193, 2020, DOI: 10.1016/j.jhazmat.2019.121193
  • 18. Pandey A., Islam Sk.S., G.D. Ransingchung R.N., Ravindranath S.S.: Comparing the performance of SBS and thermoplastics modified asphalt binders and asphalt mixes. Road Materials and Pavement Design, 24, sup1, 2023, 369–388, DOI: 10.1080/14680629.2023.2180999
  • 19. Ragaert K., Delva L., Van Geem K.: Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 2017, 24–58, DOI: 10.1016/j.wasman.2017.07.044
  • 20. Geyer R., Jambeck J.R., Law K.L.: Production, use, and fate of all plastics ever made. Science Advances, 3, 7, e1700782, 2017, DOI: 10.1126/sciadv.1700782
  • 21. Casey D., McNally C., Gibney A., Gilchrist M.D.: Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources, Conservation and Recycling, 52, 10, 2008, 1167–1174, DOI: 10.1016/j.resconrec.2008.06.002
  • 22. Awad A., Al-Adday F.: Utilization of waste plastics to enhance the performance of modified hot mix asphalt. International Journal of GEOMATE, 13, 40, 2017, 132–139, DOI: 10.21660/2017.40.170603
  • 23. El-Naga I.A., Ragab M.: Benefits of utilization the recycle polyethylene terephthalate waste plastic materials as a modifier to asphalt mixtures. Construction and Building Materials, 219, 2019, 81–90, DOI: 10.1016/j.conbuildmat.2019.05.172
  • 24. Choudhary R., Kumar A., Murkute K.: Properties of Waste Polyethylene Terephthalate (PET) Modified Asphalt Mixes: Dependence on PET Size, PET Content, and Mixing Process. Periodica Polytechnica Civil Engineering, 62, 2018, DOI: 10.3311/PPci.10797
  • 25. Wang J., Yuan J., Xiao F., Li Z., Wang J., Xu Z.: Performance investigation and sustainability evaluation of multiple-polymer asphalt mixtures in airfield pavement. Journal of Cleaner Production, 189, 2018, 67–77, DOI: 10.1016/j.jclepro.2018.03.208
  • 26. EN 1426:2015 Bitumen and bituminous binders – Determination of needle penetration
  • 27. EN 1427:2015 Bitumen and bituminous binders – Determination of the softening point – Ring and Ball method
  • 28. EN 12593:2015 Bitumen and bituminous binders – determination of the Fraass breaking point
  • 29. ASTM D4402:2015 Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer
  • 30. Plackett R.L., Burman J.P.: The Design of Optimum Multifactorial Experriments. Biometrika, 33, 4, 1946, 305–325, DOI: 10.1093/biomet/33.4.305
  • 31. Mazurek G., Podsiadło M.: Optimisation of Polymer Addition Using the Plackett-Burman Experiment Plan. IOP Conference Series: Materials Science and Engineering, 1203, 022003, 2021, DOI: 10.1088/1757-899x/1203/2/022003
  • 32. Modarres A., Hamedi H.: Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes. Materials & Design, 61, 2014, 8–15, DOI: 10.1016/j.matdes.2014.04.046
  • 33. Brasileiro L., Moreno-Navarro F., Tauste-Martínez R., Matos J., Rubio-Gámez M.C.: Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability, 11, 3, 646, 2019, DOI: 10.3390/su11030646
  • 34. García-Morales M., Partal P., Navarro F.J., Martínez-Boza F., Mackley M.R., Gallegos C.: The rheology of recycled EVA/LDPE modified bitumen. Rheologica Acta, 43, 5, 2004, 482–490, DOI: 10.1007/s00397-004-0385-4
  • 35. McShane S.L., Von Glinow M.A., Sharma R.R.: Organizational behavior: emerging knowledge and pracitice for the real world. New Delhi, Tata McGraw Hill Education, 2011
  • 36. Hastie T., Tibshirani R., Friedman. J.H.: The elements of statistical learning: data mining, inference, and prediction. Second Edition. New York, Springer, 2009
  • 37. AASHTO TP 70 Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)
  • 38. EN 13632 Bitumen and bituminous binders – Visualisation of polymer dispersion in polymer modified bitumen
  • 39. Schneider C.A., Rasband W.S., Eliceiri K.W.: NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 7, 2012, 671–675, DOI: 10.1038/nmeth.2089
  • 40. Ralph B., Kurzydłowski K.J.: The philosophy of microscopic quantification. Materials Characterization, 38, 4–5, 1997, 217–227, DOI: 10.1016/S1044-5803(97)00051-X
  • 41. Hamid A., Baaj H., El-Hakim M.: Predicting the Recovery and Nonrecoverable Compliance Behaviour of Asphalt Binders Using Artificial Neural Networks. Processes, 10, 12, 2633, 2022, DOI: 10.3390/pr10122633
  • 42. AASHTO M 332-2022 Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test
  • 43. Lander J.P., Włodarz M.: R dla każdego: zaawansowane analizy i grafika statystyczna. APN Promise, Warszawa, 2018, Warszawa, 2018
Uwagi
An extended version of the article from the Conference ‟Modern Road Pavements – MRP’2023” – Recycling in road pavement structures co-edited by Martins Zaumanis and Marcin Gajewski, published in frame of the Ministry of Education and Science project No. RCN/SP/0569/2021/1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cf2d621-dd1c-4614-bc77-de381dadbcda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.