PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of Dielectric Properties of BiNbO4-Based Microwave Ceramics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper results of the studies devoted to computer simulations of dielectric response of electroceramics in a frequency domain as well as analysis of the experimental data are given. As an object of investigations BiNbO4-based microwave ceramics was taken. Simulations of the hypothetical impedance response of the ceramic system were performed under assumption of the brick-layer model. A strategy for analysis and modelling of the impedance data for microwave electroceramics was discussed. On the base of the discussed strategy modelling of the dielectric response of BiNbO4 ceramics was performed with the electric equivalent circuit method. The Voigt’s and Maxwell’s circuits were taken as electric models. Parameters of the electric components of the circuits were determined and related to parameters of the ceramic object under study. It was found that fitting quality was good and changed within the range χ2 = 6.78 × 10-4 – 6.77 × 10-5 depending on the model.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Welding, 11/12, Narutowicza Str., Gdańsk, 80-233, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Welding, 11/12, Narutowicza Str., Gdańsk, 80-233, Poland
  • Pedagogical University of Cracow, Institute of Technology, 2 Podchorążych Str., 30-084 Kraków, Poland
autor
  • Pedagogical University of Cracow, Institute of Technology, 2 Podchorążych Str., 30-084 Kraków, Poland
Bibliografia
  • [1] E. Barsukov, J. Ross Macdonald J., (Red)., Impedance spectroscopy, theory, experiment, and applications, John Willey & Sons, Inc., Hoboken, New Jersey, 2005,
  • [2] K. Nitsch, Zastosowanie spektroskopii impedancyjnej w badaniach materiałów elektronicznych, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 1999.
  • [3] W. Bogusz, F. Krok, Elektrolity stałe. Właściwości elektryczne i sposoby ich pomiaru, WNT Warszawa, 1995.
  • [4] E. J. Abram, D. C. Sinclair, A. R. West, A strategy for analysis and modelling of impedance spectroscopy data of electroceramics: Doped lantahanum gallate, Journal of Electroceramics 10, 165-177 (2003).
  • [5] D. K. Pradhan, B. K. Samantaray, R. N. P. Choudry, A. K. Thakur, Complex impedance studies on a layered perovskite ceramic oxide – NaNdTiO4, Mater. Sci. Eng. B 116, 7-13 (2005).
  • [6] A. Lisińska-Czekaj, E. Jartych, M. Mazurek, J. Dzik, D. Czekaj, Dielektryczne i magnetyczne właściwości ceramiki multiferroicznej Bi5Ti3FeO15, Materiały Ceramiczne / Ceramic Materials 62, 2, 126-133 (2010).
  • [7] D. Czekaj, A. Lisińska-Czekaj, T. Orkisz, J. Orkisz, G. Smalarz, Impedancje spectroscopic studies of sol-gel derived barium strontium titanate thin films, Journal of the European Ceramic Society 30, 465-470 (2010).
  • [8] A. Lisińska-Czekaj, Wielofunkcyjne materiały na osnowie tytanian bizmutu, Uniwersytet Śląski, Wydawnictwo Gnome, Katowice 2012.
  • [9] M. Nocuń, Wprowadzenie do spektroskopii impedancyjnej w badaniach materiałów ceramicznych, Wyd. Nauk. Akapit, Kraków 2003.
  • [10] R. Waser, Modeling of electroceramics – application and prospects, Journal of the European Ceramic Society 19, 655-664 (1999).
  • [11] J. Fleig, J. Maier, The impedance of ceramics with highly resistive grain boundaries: Validity and limits of the brick layer model, Journal of the European Ceramic Society 19, 693-696 (1999).
  • [12] J. C. C. Abrantes, J. A. Labrincha, J. R. Frade, Representations of impedance spectra of ceramics. Part I. Simulated study cases, Materials Research Bulletin 35, 955-964 (2000).
  • [13] J. C. C. Abrantes, J. A. Labrincha, J. R. Frade, Representations of impedance spectra of ceramics. Part II. Spectra of polycrystalline SrTiO3, Materials Research Bulletin 35, 965-976 (2000).
  • [14] J. E Bauerle, Study of solid electrolyte polarization by a complex admittance method, J Phys Chem Solids 30, 12, 2657-2670 (1969).
  • [15] D. C. Sinclair, A. R. West, Effect of atmosphere on the PTCR properties of BaTiO3 ceramics, J. Mater. Sci. 29, 23, 6661-6668 (1994).
  • [16] J. C. Ruiz-Morales, D. Marrero-Lopez, J. T. S. Irvine, P. Nunez, A new alternative representation of impedance data using the derivative of the tangent of the phase angle. Application to the YSZ system and composites, Materials Research Bulletin 39, 1299-1318 (2004).
  • [17] J. C. Ruiz-Morales, D. Marrero-Lopez, J. Canales-Vazquez, P. Nunez, J. T. S. Irvine, Application of an alternative representation to identify models to fit impedance spectra, Solid State Ionics 176, 2011-2022 (2005).
  • [18] B. Boukamp, A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems, Solid State Ionics 20, 31-44 (1986).
  • [19] D. Czekaj, A. Lisińska-Czekaj, Influence of phase composition on dielectric properties of bismuth-based ceramics with scheelite-type structure, Key Engineering Materials 602-603, 683-688 (2014).
  • [20] A. Lisińska-Czekaj, D. Czekaj, J. Plewa, Influence of processing conditions on crystal structure of BiNbO4 ceramics, Ciencia & Tecnologia dos Materiais 29, e215-e218 (2017).
  • [21] B. A. Boukamp, A Linear Kronig-Kramers Transform Test for Immittance Data Validation, J. Electrochem. Soc. 142 (6), 1885-1894 (1995).
  • [22] B. A. Boukamp, Electrochemical Impedance Spectroscopy in Solid State Ionics; Recent Advances, Solid State Ionics 169 (1-4), 65-73 (2004).
  • [23] A. R. West, D. C. Sinclair, N. Hirose, Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy, Journal of Electroceramics 1, 65-71(1997).
  • [24] A. Lasia, Electrochemical impedance spectroscopy and it’s applications. In: B. E. Conway, J. O’. M. Bockris, R. E. White (Eds.), Modern Aspects of Electrochemistry, 32, Kluver Academic/Plenum Publishers, 143-248, New York (1999).
Uwagi
EN
1. The present research has been supported by Polish National Science Centre (NCN) as a research project N N507 218540.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ce31846-e1e2-4fd6-a72b-4d226a246042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.