Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
H2 sensing performance of novel Pd–Pt alloy films has been compared with those obtained by using Pd films and H2-reducted PdO films. Two different detecting systems were used to measure the hydrogenation and de-hydrogenation phases with a H2 concentration of both 5% v/v nitrogen and 1% v/v nitrogen at room temperature. The sensitivity loss observed for the Pd–Pt alloy and H2-reducted PdO samples with respect to pure Pd samples can be explained in terms of the reduction in the lattice constant and interstitial volume due to the Pt addition, which determine a decrement of hydrogen atoms penetrating in the films. On the other hand, results show an improvement in time-response for Pd–Pt alloy and H2-reducted PdO films with respect to pure Pd ones, presumably due to the increase of its permeability to H2. Moreover, the sensing measurements repeated after 60 days show that the Pd–Pt alloy films, unlike the Pd-based ones, fully preserve their performances, demonstrating the advantage of the Pt inclusion for stability purposes when the samples are stored upon humidity.
Czasopismo
Rocznik
Tom
Strony
649--661
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
- Key Laboratory of Advanced Micro Structural Materials MOE, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, 200092, Shanghai, China
autor
- National Research Council of Italy, Institute for Photonics and Nanotechnologies, Via Trasea 7, 35131 Padova, Italy
- University of Padova, Department of Information Engineering, Via Gradenigo 6/B, 35131 Padova, Italy
autor
- University of Padova, Department of Physics and Astronomy, Via Marzolo 19, 35131 Padova, Italy
autor
- National Research Council of Italy, Institute for Photonics and Nanotechnologies, Via Trasea 7, 35131 Padova, Italy
autor
- Key Laboratory of Advanced Micro Structural Materials MOE, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, 200092, Shanghai, China
autor
- Key Laboratory of Advanced Micro Structural Materials MOE, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, 200092, Shanghai, China
autor
- Key Laboratory of Advanced Micro Structural Materials MOE, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, 200092, Shanghai, China
autor
- University of Padova, Department of Industrial Engineering, Via Gradenigo 6/A, 35131 Padova, Italy
autor
- National Research Council of Italy, Institute for Photonics and Nanotechnologies, Via Trasea 7, 35131 Padova, Italy
- University of Padova, Department of Information Engineering, Via Gradenigo 6/B, 35131 Padova, Italy
Bibliografia
- [1] GUPTA R., BASILE A., VEZIROGLU T.N., Compendium of Hydrogen Energy: Hydrogen Storage, Distribution and Infrastructure, Woodhead Publishing, 2016.
- [2] SCHLAPBACH L., Hydrogen-fuelled vehicles, Nature 460, 2009, pp. 809–811, DOI:10.1038/460809a.
- [3] CHU S., MAJUMDAR A., Opportunities and challenges for a sustainable energy future, Nature 488, 2012, pp. 294–303, DOI:10.1038/nature11475.
- [4] CECERE D., GIACOMAZZI E., INGENITO A., A review on hydrogen industrial aerospace applications, International Journal of Hydrogen Energy 39(20), 2014, pp. 10731–10747, DOI:10.1016/j.ijhydene.2014.04.126.
- [5] AHLUWALIA R.K., PENG J.K., ROH H.S., HUA T.Q., HOUCHINS C., JAMES B.D., Supercritical cryo-compressed hydrogen storage for fuel cell electric buses, International Journal of Hydrogen Energy 43(22), 2018, pp. 10215–10231, DOI:10.1016/j.ijhydene.2018.04.113.
- [6] COTTRELL C.A., GRASMAN S.E., THOMAS M., MARTIN K.B., SHEFFIELD J.W., Strategies for stationary and portable fuel cell markets, International Journal of Hydrogen Energy 36(13), 2011, pp. 7969–7975, DOI:10.1016/j.ijhydene.2011.01.056.
- [7] HÜBERT T., BOON-BRETT L., BLACK G., BANACH U., Hydrogen sensors – A review, Sensors and Actuators B: Chemical 157(2), 2011, pp. 329–352, DOI:10.1016/j.snb.2011.04.070.
- [8] BUTTNER W.J., POST M.B., BURGESS R., RIVKIN C., An overview of hydrogen safety sensors and requirements, International Journal of Hydrogen Energy 36(3), 2011, pp. 2462–2470, DOI:10.1016/j.ijhydene.2010.04.176.
- [9] WADELL C., SYRENOVA S., LANGHAMMER C., Plasmonic hydrogen sensing with nanostructured metal hydrides, ACS Nano 8(12), 2014, pp. 11925–11940, DOI:10.1021/nn505804f.
- [10] TITTL A., MAI P., TAUBERT R., DREGELY D., LIU N., GIESSEN H., Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing, Nano Letters 11(10), 2011, pp. 4366–4369, DOI:10.1021/nl202489g.
- [11] CEREA A., GAROLI D., ZILIO P., DIPALO M., CALANDRINI E., JACASSI A., CAPRETTINI V., CARRARA A., PELIZZO M.G., DE ANGELIS F., Modified three-dimensional nanoantennas for infrared hydrogen detection, Microelectronic Engineering 162, 2016, pp. 105–109, DOI:10.1016/j.mee.2016.05.004.
- [12] YUAN M., LEE K., VAN CAMPEN D.G., LIGUORI S., TONEY M.F., WILCOX J., Hydrogen purification in palladium-based membranes: an operando X-ray diffraction study, Industrial & Engineering Chemistry 58(2), 2019, pp. 926–934, DOI:10.1021/acs.iecr.8b05017.
- [13] ZUCCON S., ZUPPELLA P., CRISTOFANI M., SILVESTRINI S., CORSO A.J., MAGGINI M., PELIZZO M.G., Functional palladium metal films for plasmonic devices: an experimental proof, Journal of Optics 16(5), 2014, article 055001, DOI:10.1088/2040-8978/16/5/055001.
- [14] ÖZTÜRK S., KILINÇ N., Pd thin films on flexible substrate for hydrogen sensor, Journal of Alloys and Compounds 674, 2016, pp. 179–184, DOI:10.1016/j.jallcom.2016.03.042.
- [15] LI Y., CHENG Y.T., Hydrogen diffusion and solubility in palladium thin films, International Journal of Hydrogen Energy 21(4), 1996, pp. 281–291, DOI:10.1016/0360-3199(95)00094-1.
- [16] LEE E., LEE J.M., KOO J., LEE W., LEE T., Hysteresis behavior of electrical resistance in Pd thin films during the process of absorption and desorption of hydrogen gas, International Journal of Hydrogen Energy 35(13), 2010, pp. 6984–6991, DOI:10.1016/j.ijhydene.2010.04.051.
- [17] CORSO A.J., MARTUCCI A., BAZZAN M., ZUPPELLA P., GAROLI D., PELIZZO M.G., In situ real-time investigation of hydrogen-induced structural and optical changes in palladium thin films, Journal of Alloys and Compounds 704, 2017, pp. 303–310, DOI:10.1016/j.jallcom.2017.02.042.
- [18] LEE Y.T., LEE J.M., KIM Y.J., JOE J.H., LEE W., Hydrogen gas sensing properties of PdO thin films with nano-sized cracks, Nanotechnology 21(16), 2010, article 165503, DOI:10.1088/0957-4484/21/16/165503.
- [19] NOH H.J., KIM H.J., PARK Y.M., PARK J.S., LEE H.N., Complex behavior of hydrogen sensor using nanoporous palladium film prepared by evaporation, Applied Surface Science 480, 2019, pp. 52–56, DOI:10.1016/j.apsusc.2019.02.088.
- [20] CORSO A.J., TESSAROLO E., GUIDOLIN M., DELLA GASPERA E., MARTUCCI A., ANGIOLA M., DONAZZAN A., PELIZZO M.G., Room-temperature optical detection of hydrogen gas using palladium nano-islands, International Journal of Hydrogen Energy 43(11), 2018, pp. 5783–5792, DOI:10.1016/j.ijhydene.2018.01.183.
- [21] BOUDIBA A., ZHANG C., UMEK P., BITTENCOURT C., SNYDERS R., OLIVIER M.G., DEBLIQUY M., Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies, International Journal of Hydrogen Energy 38(5), 2013, pp. 2565–2577, DOI:10.1016/j.ijhydene.2012.11.040.
- [22] LEE E., LEE J.M., LEE E., NOH J.S., JOE J.H., JUNG B., LEE W., Hydrogen gas sensing performance of Pd–Ni alloy thin films, Thin Solid Films 519(2), 2010, pp. 880–884, DOI:10.1016/j.tsf.2010.07.122.
- [23] LIU Y., CHEN Y., SONG H., ZHANG G., Hydrogen gas sensor based on palladium and yttrium alloy ultrathin film, Review of Scientific Instruments 83(12), 2012, article 125003, DOI:10.1063/1.4770329.
- [24] SHARMA B., KIM J.S., Pd/Ag alloy as an application for hydrogen sensing, International Journal of Hydrogen Energy 42(40), 2017, pp. 25446–25452, DOI:10.1016/j.ijhydene.2017.08.142.
- [25] NUGROHO F.A.A., DARMADI I., ZHDANOV V.P., LANGHAMMER C., Universal scaling and design rules of hydrogen-induced optical properties in Pd and Pd-alloy nanoparticles, ACS Nano 12(10), 2018, pp. 9903–9912, DOI:10.1021/acsnano.8b02835.
- [26] ZHAO Z., KNIGHT M., KUMAR S., EISENBRAUN E.T., CARPENTER M.A., Humidity effects on Pd/Au-based all-optical hydrogen sensors, Sensors and Actuators B: Chemical 129(2), 2008, pp. 726–733, DOI:10.1016/j.snb.2007.09.032.
- [27] DAI J., PENG W., WANG G., XIANG F., QIN Y., WANG M., DAI Y., YANG M., DENG H., ZHANG P., Ultra-high sensitive optical fiber hydrogen sensor using self-referenced demodulation method and WO3-Pd2Pt-Pt composite film, Optics Express 25(3), 2017, pp. 2009–2015, DOI:10.1364/OE.25.002009.
- [28] CAO F., ZHAO P., WANG Z., ZHANG X., ZHENG H., WANG J., ZHOU D., HU Y., GU H., An ultrasensitive and ultraselective hydrogen sensor based on defect-dominated electron scattering in Pt nanowire arrays, Advanced Materials Interfaces 6(1), 2018, article 1801304, DOI:10.1002/admi.201801304.
- [29] SRIPADA R., PARAMBATH V.B., BARO M., NAIR S.P.N., SUNDARA R., Platinum and platinum–iron alloy nanoparticles dispersed nitrogen-doped graphene as high performance room temperature hydrogen sensor, International Journal of Hydrogen Energy 40(32), 2015, pp. 10346–10353, DOI:10.1016/j.ijhydene.2015.06.018.
- [30] YANG M., QIN Y., MA Y., WANG G., XIANG F., WANG M., DAI J., CHEN Z., XIA J., ZHOU L., High-sensitivity fiber optic hydrogen sensor in air by optimizing a self-referenced demodulating method, Applied Optics 57(27), 2018, pp. 8011–8015, DOI:10.1364/AO.57.008011.
- [31] DAI J., YANG M., YANG Z., LI Z., WANG Y., WANG G., ZHANG Y., ZHUANG Z., Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating, Sensors and Actuators B: Chemical 190, 2014, pp. 657–663, DOI:10.1016/j.snb.2013.08.083.
- [32] STROHFELDT N., TITTL A., GIESSEN H., Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications, Optical Materials Express 3(2), 2013, pp. 194–204, DOI:10.1364/OME.3.000194.
- [33] ABBURI A., ABRAMS N., YEH W.J., Synthesis of nanoporous platinum thin films and application as hydrogen sensor, Journal of Porous Materials 19(5), 2012, pp. 543–549, DOI:10.1007/s10934-011-9503-8.
- [34] SHIM J.Y., LEE J.D., JIN J.M., CHEONG H., LEE S.H., Pd–Pt alloy as a catalyst in gasochromic thin films for hydrogen sensors, Solar Energy Materials and Solar Cells 93(12), 2009, pp. 2133–2137, DOI:10.1016/j.solmat.2009.01.004.
- [35] LEBON A., GARCÍA-FUENTE A., VEGA A., AGUILERA-GRANJA F., Hydrogen interaction in Pd–Pt alloy nanoparticles, The Journal of Physical Chemistry C 116(1), 2012, pp. 126–133, DOI:10.1021/jp207329q.
- [36] GAUTAM Y.K., SANGER A., KUMAR A., CHANDRA R., A room temperature hydrogen sensor based on Pd–Mg alloy and multilayers prepared by magnetron sputtering, International Journal of Hydrogen Energy 40(45), 2015, pp. 15549–15555, DOI:10.1016/j.ijhydene.2015.08.078.
- [37] WINDT D.L., IMD—Software for modeling the optical properties of multilayer films, Computers in Physics 12(4), 1998, pp. 360–370, DOI:10.1063/1.168689.
- [38] HENKE B.L., GULLIKSON E.M., DAVIS J.C., X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50-30,000 eV, Z = 1-92, Atomic Data and Nuclear Data Tables 54(2), 1993, pp. 181–342, DOI:10.1006/adnd.1993.1013.
- [39] HUGHES R.C., SCHUBERT W.K., BUSS R.J., Solid-state hydrogen sensors using palladium-nickel alloys: effect of alloy composition on sensor response, Journal of the Electrochemical Society 142(1), 1995, pp. 249–254, DOI:10.1149/1.2043887.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ce138d8-64ab-4170-8155-7756397e96de