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Abstract 

Multi-modal transport means the transport of the objects through at least two different carriers of any 
combination of simple tasks of transport carriers (by truck, by train, by ship or by plane). A Semi-Markov (SM) model 
of multi-modal transport operation is presented in the article. The SM process is defined by the renewal kernel of that 
one. In our model, time to failure of the operation is represented by a random variable that denotes the first passage 
time from the given state to the subset of states. The duration of one operation cycle is a random variable representing 
the return time to the initial state. The appropriate theorems of the Semi-Markov processes theory allow us to 
calculate characteristics and parameters of the transport operation model.  

The article presents the example of the transport operation final part of container with cargo from Warsaw to 
Stockholm, where from Warsaw to Gdynia, the container is transported by lorry, from Gdynia to Karlscorona by ferry 
and from Karlscorona to Stockholm by truck.  
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1. Introduction 
 

The tasks of transport are realized by the transport operation systems. Some of them realized 
by any one of the carriers (by truck, by train, by ship or by plane) we would contractually agree to 
call “the simple transport”. The task of transport, realized by a combined means (carriers) of 
delivery we would contractually call “complex transport”. It is a combination of the above-defined 
basic tasks of transport. 

Multi-modal transport, the transport of the objects through at least two different carriers of any 
combination of simple tasks of transport carriers (by truck, by train, by ship or by plane). The 
cargo might change any provided container – it means that it might be repackaged to another type 
of container to suit the requirements of any given carrier, as it might be required or practised for 
the logistic reasons. 

Inter-modal transport [5]: the transport of the objects through at least two different carriers of 
any combination of transport basic media (by truck, by train, by ship or by plane). The cargo might 
not change the provided container – it means that it might not be repackaged to any another type of 
container, and has to be shipped in the originators container. To suit the requirements of any Air 
transport carrier, (Air transport should be used), it must be required to be packaged in an special 
approved for Air transport specific specialized container, usually leased or loaned from the Air 
carrier. Bi-modal transport: the transport using adopted bi-modal (truck, train) special truck trailer 
hook up container built to be transported by truck trailer (tractor) or on the railroads on the railroad 
platform car. The cargo is never repackaged between destinations. 

The term reliability of the transport operation at the given moment t, means the probability of 
ability of the transport tasks realization at the instant t by the complex transport system.  

2. Semi-Markov model 
 

We will construct a semi-Markov model of the multi-modal transport operation under 
assumptions that there are possible perturbations during execution of the elementary tasks and 
there is possible total failure in some stage of the multi-modal operation. The model constructed 
here is some modification of the model presented in monograph [4]. 
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2.1. Basic concepts 
 

To determine the semi-Markov process as a model we have to define its initial distribution and 
all elements of its kernel [2-4]. Recall that the semi-Markov kernel is the matrix of transition 
probabilities [3]: 

 𝑄𝑄(𝑡𝑡) = [𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡):  𝑖𝑖, 𝑗𝑗 ∈ 𝑆𝑆], (1) 

 𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑃𝑃(𝜏𝜏𝑛𝑛+1 − 𝜏𝜏𝑛𝑛  ≤ 𝑡𝑡,𝑋𝑋(𝜏𝜏𝑛𝑛+1) = 𝑗𝑗 |  𝑋𝑋(𝜏𝜏𝑛𝑛) = 𝑖𝑖),    𝑡𝑡 ≥ 0, (2) 

where 𝜏𝜏𝑛𝑛,𝑛𝑛 = 0, 1, 2, … denote instants of the process state changes.  
The sequence  {𝑋𝑋(𝜏𝜏𝑛𝑛):  𝑛𝑛 = 0,1, … }  is homogeneous Markov chain with transition 

probabilities 

 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝑋𝑋(𝜏𝜏𝑛𝑛+1) = 𝑗𝑗 | 𝑋𝑋(𝜏𝜏𝑛𝑛) = 𝑖𝑖) =  lim
𝑡𝑡→∞

𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡).  (3) 

The function 

  𝐺𝐺𝑖𝑖(𝑡𝑡) = 𝑃𝑃(𝑇𝑇𝑖𝑖 ≤ 𝑡𝑡) = 𝑃𝑃(𝜏𝜏𝑛𝑛+1 − 𝜏𝜏𝑛𝑛 ≤  𝑡𝑡 | 𝑋𝑋(𝜏𝜏𝑛𝑛) = 𝑖𝑖) = ∑𝑗𝑗∈𝑆𝑆 𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡) (4) 

is the CDF of the random variable 𝑇𝑇𝑖𝑖 denoting time spent in state 𝑖𝑖 when the successor state is 
unknown. This random variable is called a waiting time. The function 

 𝐹𝐹𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑃𝑃(𝜏𝜏𝑛𝑛+1 − 𝜏𝜏𝑛𝑛 ≤ 𝑡𝑡 | 𝑋𝑋(𝜏𝜏𝑛𝑛) = 𝑖𝑖,𝑋𝑋(𝜏𝜏𝑛𝑛+1) = 𝑗𝑗) = 𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑝𝑝𝑖𝑖𝑖𝑖

 (5) 

is CDF of a random variable 𝑇𝑇𝑖𝑖𝑖𝑖 that is called a holding time of state 𝑖𝑖, if the next state will be 𝑗𝑗. 
From (5) we have  

 𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑝𝑝𝑖𝑖𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖(𝑡𝑡). (6) 
 
2.2. Descriptions and assumptions 
 

We assume, that a duration of an 𝑖𝑖-th stage of operation, is a non-negative random variable 𝜉𝜉𝑖𝑖 ,
𝑖𝑖 = 1,⋯ ,𝑛𝑛  having any distribution given by CDF  

 𝐹𝐹𝜉𝜉𝑖𝑖(𝑡𝑡) = 𝑃𝑃(𝜉𝜉𝑖𝑖 ≤ 𝑡𝑡). (7) 

We also assume that the time to some perturbation of the operation on the 𝑖𝑖-th stage is the 
nonnegative random variable  𝜂𝜂𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛  with the exponential distribution  

 𝑃𝑃(𝜂𝜂𝑖𝑖 ≤ 𝑡𝑡) = 1 − 𝑒𝑒−𝜆𝜆𝑖𝑖 𝑡𝑡 ,    𝑖𝑖 = 1, … ,𝑛𝑛. (8) 

We also suppose that the operation interrupted due to the perturbation can be carried out from 
the beginning of the stage corresponding to this one. Time to resume the operation is 
a nonnegative random variable  𝜁𝜁𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛  with CDF  

 𝐹𝐹𝜁𝜁𝑖𝑖(𝑡𝑡) = 𝑃𝑃(𝜁𝜁𝑖𝑖 ≤ 𝑡𝑡),   𝑖𝑖 = 1, … ,𝑛𝑛. (9) 

Time to failure of the operation on the 𝑖𝑖-th stage is the nonnegative random variable 𝜗𝜗𝑖𝑖 ,  
𝑖𝑖 = 1,⋯ ,𝑛𝑛  with the exponential distribution  

 𝐹𝐹 𝜗𝜗𝑖𝑖(𝑡𝑡) = 1 − 𝑒𝑒−∝𝑖𝑖 𝑡𝑡 ,     𝑖𝑖 = 1, … ,𝑛𝑛. (10) 

Time to failure of the operation on the 𝑖𝑖-th perturbed stage is the nonnegative random variable 
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 𝜗𝜗3+𝑖𝑖 , 𝑖𝑖 = 1,⋯ ,𝑛𝑛  with the exponential distribution 

𝐹𝐹 𝜗𝜗3+𝑖𝑖(𝑡𝑡) = 1 − 𝑒𝑒−𝛽𝛽𝑖𝑖 𝑡𝑡 ,     𝑖𝑖 = 1, … ,𝑛𝑛. 

Time to renewal of the whole operation is random variable 𝜅𝜅 with the distribution function 
given by any CDF 𝐹𝐹𝜅𝜅(𝑡𝑡). 

The operation is cyclical in the sense that after its completion the operation starts in the 
opposite direction. 
 
2.3. General model 
 

In this case, we suppose that the state space of the process is  

 𝑆𝑆 = {0, 1, 2, … ,𝑛𝑛,𝑛𝑛 + 1, … , 2𝑛𝑛}, (11) 

where 𝑖𝑖 ∈ {  1, …𝑛𝑛 } denotes 𝑖𝑖-th stage of the operation, 𝑖𝑖 ∈ { 𝑛𝑛 + 1, … ,2𝑛𝑛} represents a state of 
a perturbation on 𝑖𝑖-th stage of the operation, state 0 denotes total failure of the operation. The 
possible state changes of the process are represented by a flow graph that is shown in Fig. 1. 
 

 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 

Fig.1. The graph of the state changes 
 

The corresponding elements of Semi-Markov kernel are  

 𝑄𝑄𝑖𝑖 𝑖𝑖+1(𝑡𝑡) = 𝑃𝑃(𝜉𝜉𝑖𝑖 ≤ 𝑡𝑡, 𝜂𝜂𝑖𝑖 > 𝜉𝜉𝑖𝑖 , 𝜗𝜗𝑖𝑖 > 𝜉𝜉𝑖𝑖 ) = ∫𝑡𝑡0 𝑒𝑒
−(𝜆𝜆𝑖𝑖+∝𝑖𝑖)𝑥𝑥𝑑𝑑𝐹𝐹𝜉𝜉𝑖𝑖(𝑥𝑥),    𝑖𝑖 = 1, … ,𝑛𝑛 − 1, (12) 

 𝑄𝑄𝑛𝑛 1(𝑡𝑡) = 𝑃𝑃(𝜉𝜉𝑛𝑛 ≤ 𝑡𝑡, 𝜂𝜂𝑛𝑛 > 𝜉𝜉𝑛𝑛 , 𝜗𝜗𝑛𝑛 > 𝜉𝜉𝑛𝑛 ) = ∫𝑡𝑡0 𝑒𝑒
−(𝜆𝜆𝑛𝑛+∝𝑛𝑛)𝑥𝑥𝑑𝑑𝐹𝐹𝜉𝜉𝑛𝑛(𝑥𝑥), (13) 

 𝑄𝑄𝑖𝑖 𝑛𝑛+i(𝑡𝑡) = 𝑃𝑃(𝜂𝜂𝑖𝑖 ≤ 𝑡𝑡, 𝜉𝜉𝑖𝑖 > 𝜂𝜂𝑖𝑖 ,𝜗𝜗𝑖𝑖 > 𝜂𝜂𝑖𝑖) = ∫𝑡𝑡0 𝜆𝜆𝑖𝑖𝑒𝑒
−(𝜆𝜆𝑖𝑖+∝𝑖𝑖) 𝑥𝑥�1 − 𝐹𝐹𝜉𝜉𝑖𝑖(𝑥𝑥)�𝑑𝑑𝑑𝑑, 𝑖𝑖 = 1, 2, … , n, (14) 

 𝑄𝑄𝑖𝑖 0(𝑡𝑡) = 𝑃𝑃(𝜗𝜗𝑖𝑖 ≤ 𝑡𝑡, 𝜉𝜉𝑖𝑖 > 𝜗𝜗𝑖𝑖 , 𝜂𝜂𝑖𝑖 > 𝜗𝜗𝑖𝑖) = ∫𝑡𝑡0 ∝𝑖𝑖 𝑒𝑒−(𝜆𝜆𝑖𝑖+∝𝑖𝑖) 𝑥𝑥�1 − 𝐹𝐹𝜉𝜉𝑖𝑖(𝑥𝑥)�𝑑𝑑𝑑𝑑, 𝑖𝑖 = 1, … ,𝑛𝑛, (15) 

 𝑄𝑄𝑛𝑛+𝑖𝑖 i(𝑡𝑡) = 𝑃𝑃(𝜁𝜁𝑖𝑖 ≤ 𝑡𝑡, ) ≤ 𝑡𝑡 , 𝜁𝜁𝑖𝑖 <  𝜗𝜗𝑛𝑛 +𝑖𝑖 ) = ∫𝑡𝑡0 𝑒𝑒
− 𝛽𝛽𝑖𝑖𝑥𝑥 𝑑𝑑𝐹𝐹𝜁𝜁𝑖𝑖(𝑥𝑥), 𝑖𝑖 = 1, … ,𝑛𝑛, (16) 

 𝑄𝑄𝑛𝑛+𝑖𝑖 0(𝑡𝑡) = 𝑃𝑃( 𝜗𝜗𝑛𝑛 +𝑖𝑖 ≤ 𝑡𝑡 , 𝜁𝜁𝑖𝑖 >  𝜗𝜗𝑛𝑛 +𝑖𝑖 ) = ∫𝑡𝑡0 𝛽𝛽𝑖𝑖𝑒𝑒
− 𝛽𝛽𝑖𝑖𝑥𝑥�1 − 𝐹𝐹𝜁𝜁𝑖𝑖(𝑥𝑥)�𝑑𝑑𝑑𝑑, 𝑖𝑖 = 1, … ,𝑛𝑛, (17) 

 𝑄𝑄01(𝑡𝑡) = 𝑃𝑃(𝜅𝜅 ≤ 𝑡𝑡) = 𝐹𝐹𝜅𝜅(𝑡𝑡). (18) 

 1  2 n-1  n 

n+1
  

n+2  2n-1 2n  

 

 

0 
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2.4. Model for n = 3 
 

For n = 3 the set of states is 𝑆𝑆 = {0, 1, 2, 3, 4, 5, 6, 7} and the semi-Markov kernel takes of the 
form:  

 

 𝑄𝑄(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 𝑄𝑄01(𝑡𝑡) 0 0 0 0 0
𝑄𝑄10(𝑡𝑡) 0 𝑄𝑄12(𝑡𝑡) 0 𝑄𝑄14(𝑡𝑡) 0 0
𝑄𝑄20(𝑡𝑡) 0 0 𝑄𝑄23(𝑡𝑡) 0 𝑄𝑄25(𝑡𝑡) 0
𝑄𝑄30(𝑡𝑡) 𝑄𝑄31(𝑡𝑡) 0 0 0 0 𝑄𝑄36(𝑡𝑡)
𝑄𝑄40(𝑡𝑡) 𝑄𝑄41(𝑡𝑡) 0 0 0 0 0
𝑄𝑄50(𝑡𝑡) 0 𝑄𝑄52(𝑡𝑡) 0 0 0 0
𝑄𝑄60(𝑡𝑡) 0 0 𝑄𝑄63(𝑡𝑡) 0 0 0

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 , (19) 

 

where: 

𝑄𝑄01(𝑡𝑡) = 𝐹𝐹𝜅𝜅(𝑡𝑡), 

𝑄𝑄𝑖𝑖0(𝑡𝑡) = ∫𝑡𝑡0 ∝𝑖𝑖 𝑒𝑒−(𝜆𝜆𝑖𝑖+∝𝑖𝑖) 𝑥𝑥�1 − 𝐹𝐹𝜉𝜉𝑖𝑖(𝑥𝑥)�𝑑𝑑𝑑𝑑 ,     𝑖𝑖 = 1, 2, 3,  

𝑄𝑄𝑖𝑖 𝑖𝑖+1(𝑡𝑡) = ∫𝑡𝑡0 𝑒𝑒
−(𝜆𝜆𝑖𝑖+∝𝑖𝑖)𝑥𝑥𝑑𝑑𝐹𝐹𝜉𝜉𝑖𝑖(𝑥𝑥) ,      𝑖𝑖 = 1, 2,          𝑄𝑄31(𝑡𝑡) = ∫𝑡𝑡0 𝑒𝑒

−(𝜆𝜆3+∝3)𝑥𝑥𝑑𝑑𝐹𝐹𝜉𝜉3(𝑥𝑥), 

𝑄𝑄3+𝑖𝑖 0(𝑡𝑡) = ∫𝑡𝑡0 𝛽𝛽𝑖𝑖𝑒𝑒
− 𝛽𝛽𝑖𝑖𝑥𝑥�1 − 𝐹𝐹𝜁𝜁𝑖𝑖(𝑥𝑥)�𝑑𝑑𝑑𝑑 , 𝑖𝑖 = 1, 2, 3, 

𝑄𝑄3+𝑖𝑖 i(𝑡𝑡) = ∫𝑡𝑡0 𝑒𝑒
− 𝛽𝛽𝑖𝑖𝑥𝑥 𝑑𝑑𝐹𝐹𝜁𝜁𝑖𝑖(𝑥𝑥), 𝑖𝑖 = 1, 2, 3,  

𝑄𝑄𝑖𝑖 3+i(𝑡𝑡) = ∫𝑡𝑡0 𝜆𝜆𝑖𝑖𝑒𝑒
−(𝜆𝜆𝑖𝑖+∝𝑖𝑖) 𝑥𝑥�1 − 𝐹𝐹𝜉𝜉𝑖𝑖(𝑥𝑥)�𝑑𝑑𝑑𝑑 , 𝑖𝑖 = 1, 2, 3.  

 

3. Reliability and operation characteristics 
 

Assume that evolution of a system reliability is describe by a finite state space semi-Markov 
process {𝑋𝑋(𝑡𝑡): 𝑡𝑡 ≥ 0}.  

Suppose that a value of the random variable Θ𝐷𝐷 denotes a first passage time to the subset 𝐷𝐷  
or the time of a first arrival at the set of states  𝐷𝐷 ⊂ 𝑆𝑆  of semi-Markov process  {𝑋𝑋(𝑡𝑡):  𝑡𝑡 ≥ 0}. 
A function:  

𝛷𝛷𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑃𝑃(Θ𝐷𝐷 ≤ 𝑡𝑡| 𝑋𝑋(0) = 𝑖𝑖), 𝑡𝑡 ≥ 0 
is Cumulative Distribution Function (CDF) of the random variable  Θ𝑖𝑖𝑖𝑖  denoting the first passage 
time from the state 𝑖𝑖 ∈ 𝐷𝐷′ to the subset 𝐷𝐷.  

If 𝐷𝐷′ consists of the functioning states (up states) and 𝐷𝐷 contains all failed states then 
Φ𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑡𝑡 ≥ 0 is CDF of the time to failure of an object with initial state 𝑖𝑖 ∈ 𝐷𝐷′. For a finite state 
space semi-Markov, processes the distributions 𝛷𝛷𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑖𝑖 ∈ 𝐷𝐷′ are proper and they are the only 
solutions of the equations system that Laplace-Stieltjes (L-S) transformation leads to the linear 
system of equations for (L-S) transforms:  

 𝜑𝜑�𝑖𝑖𝑖𝑖(𝑠𝑠) = ∑𝑗𝑗∈𝐷𝐷 𝑞𝑞�𝑖𝑖𝑖𝑖(𝑠𝑠) + ∑𝑘𝑘∈𝐷𝐷′ 𝑞𝑞�𝑖𝑖𝑖𝑖(𝑠𝑠)𝜑𝜑�𝑘𝑘𝑘𝑘(𝑠𝑠), (20) 

where 𝜑𝜑�𝑖𝑖𝑖𝑖(𝑠𝑠) = ∫∞0 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝛷𝛷𝑖𝑖𝑖𝑖(𝑡𝑡) are L-S transforms of the unknown CDF of the random 
variables Θ𝑖𝑖𝑖𝑖 , 𝑖𝑖 ∈ 𝐴𝐴′ and 𝑞𝑞�𝑖𝑖𝑖𝑖(𝑠𝑠) = ∫∞0 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡) are L-S transforms of the given functions 
𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑖𝑖, 𝑗𝑗 ∈ 𝑆𝑆. That linear system of equations is equivalent to the matrix equation:  

 (𝐼𝐼 − 𝑞𝑞𝐷𝐷′(𝑠𝑠))𝜑𝜑𝐷𝐷′(𝑠𝑠) = 𝑏𝑏(𝑠𝑠), (21) 

where 𝐼𝐼 = [𝛿𝛿𝑖𝑖𝑖𝑖:  𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷′] is the unit matrix,  
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 𝑞𝑞𝐷𝐷′(𝑠𝑠) = [𝑞𝑞�𝑖𝑖𝑖𝑖(𝑠𝑠):  𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷′] (22) 

is the square sub-matrix of the L-S transforms of the matrix 𝑞𝑞(𝑠𝑠), while:  

 𝜑𝜑𝐷𝐷′(𝑠𝑠) = [𝜑𝜑�𝑖𝑖𝑖𝑖(𝑠𝑠):  𝑖𝑖 ∈ 𝐴𝐴′]𝑇𝑇 ,    𝑏𝑏(𝑠𝑠) = [∑𝑗𝑗∈𝐷𝐷 𝑞𝑞�𝑖𝑖𝑖𝑖(𝑠𝑠):  𝑖𝑖 ∈ 𝐷𝐷′] (23) 

are one-column matrices of the corresponding L-S transforms. The linear system of equations for 
the L-S transforms allows us to obtain the linear system of equations for the moments of the 
random variables Θ𝑖𝑖𝑖𝑖, 𝑖𝑖 ∈ 𝐷𝐷′.  

In model (2.4) the states  1, 2, 3  represent “up” reliability states, the states  4, 5, 6  are the 
perturbed reliability states (partly “up”), the state  0  is a “down” reliability state. The random 
variable  Θ𝑖𝑖𝑖𝑖, 𝐷𝐷 = {0}, 𝑖𝑖 ∈ 𝐴𝐴′ = {1, … ,6}  denoting the first passage time from a state 𝑖𝑖 ∈ 𝐷𝐷′ to the 
state 0 means the time to the total failure of the operation if the initial state is  𝑖𝑖. The Laplace-
Stielties transform for the CDF of the random variables  Θ𝑖𝑖𝑖𝑖, 𝑖𝑖 ∈ 𝐴𝐴′   we obtain from a matrix 
equation (21). In this case, we have 𝐷𝐷′ = {1, 2, 3, 4, 5, 6},  𝐷𝐷 = {0}.  

From the solution of this equation, we get the Laplace-Stielties (L-S) transform of the density 
functions  𝜑𝜑�𝑖𝑖0(𝑠𝑠)  of the random variable Θ𝑖𝑖0, 𝑖𝑖 = 1, … 6. The Laplace transform of the reliability 
function is given by the formula  

 𝑅𝑅�(𝑠𝑠) = 1−𝜑𝜑�10(𝑠𝑠)
𝑠𝑠

, (24) 

because the initial state is 1 ∈ 𝐴𝐴′. 
The expectations 𝐸𝐸(Θ𝑖𝑖𝑖𝑖), 𝑖𝑖 ∈ 𝐴𝐴′ we can obtain by solving the equation: 

 (𝐼𝐼 − 𝑃𝑃𝐷𝐷′)Θ𝐷𝐷′ = 𝑇𝑇𝐴𝐴′, (25) 

where: 
𝑃𝑃𝐷𝐷′ = [𝑝𝑝𝑖𝑖𝑖𝑖:  𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷′],    Θ𝐷𝐷′ = [𝐸𝐸(Θ𝑖𝑖𝑖𝑖):  𝑖𝑖 ∈ 𝐷𝐷′]𝑇𝑇 , 𝑇𝑇𝐴𝐴′ = [𝐸𝐸(𝑇𝑇𝑖𝑖):  𝑖𝑖 ∈ 𝐷𝐷′] 

and 𝐼𝐼 is the unit matrix.   
To find the second moments 𝐸𝐸(𝛩𝛩𝑖𝑖𝑖𝑖2 ), 𝑖𝑖 ∈ 𝐷𝐷′ we have to solve the matrix equation: 

 (𝐼𝐼 − 𝑃𝑃𝐷𝐷′)Θ𝐷𝐷′
2

= 𝐵𝐵𝐷𝐷, (26) 

where:  

𝑃𝑃𝐴𝐴′ = [𝑝𝑝𝑖𝑖𝑖𝑖: 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷′],    Θ𝐴𝐴′ = [𝐸𝐸(Θ𝑖𝑖𝑖𝑖2 ): 𝑖𝑖 ∈ 𝐷𝐷′]𝑇𝑇 , 𝐵𝐵𝐷𝐷 = [𝑏𝑏𝑖𝑖𝑖𝑖: 𝑖𝑖 ∈ 𝐴𝐴′]𝑇𝑇, 

𝑏𝑏𝑖𝑖𝑖𝑖 = 𝐸𝐸(𝑇𝑇𝑖𝑖2) + 2∑𝑘𝑘∈𝐷𝐷′ 𝑝𝑝𝑖𝑖𝑖𝑖𝐸𝐸(𝑇𝑇𝑖𝑖𝑖𝑖)𝐸𝐸(𝛩𝛩𝑘𝑘𝑘𝑘). 

A random variable 𝛩𝛩𝑗𝑗𝑗𝑗 , 𝑗𝑗 ∈ 𝑆𝑆 denotes the first return time to the state, 𝑗𝑗 of the SM process. 
The CDF of the random variable Θ𝑗𝑗𝑗𝑗 is denoted 𝛷𝛷𝑗𝑗𝑗𝑗(𝑡𝑡) = 𝑃𝑃�Θ𝑗𝑗𝑗𝑗 ≤ 𝑡𝑡�. The L-S transform this 
function is: 

 𝜑𝜑�𝑗𝑗𝑗𝑗(𝑠𝑠) = 𝑞𝑞�𝑖𝑖𝑖𝑖(𝑠𝑠) + ∑𝑘𝑘∈𝑆𝑆−{𝑗𝑗} 𝑞𝑞�𝑗𝑗𝑗𝑗(𝑠𝑠)𝜑𝜑�𝑘𝑘𝑘𝑘(𝑠𝑠),    𝑗𝑗 ∈ 𝑆𝑆. (27) 

The expectation and second moment of the random variable Θ𝑗𝑗𝑗𝑗 are given by the rules: 

 𝐸𝐸 (𝛩𝛩𝑗𝑗𝑗𝑗) = 𝐸𝐸�𝑇𝑇𝑗𝑗� + ∑𝑘𝑘∈𝑆𝑆−{𝑗𝑗} 𝑝𝑝𝑗𝑗𝑗𝑗𝐸𝐸�𝛩𝛩𝑘𝑘𝑘𝑘� ,    𝑗𝑗 ∈ 𝑆𝑆 (28) 

 𝐸𝐸� 𝛩𝛩𝑗𝑗𝑗𝑗2 � = 𝐸𝐸�𝑇𝑇𝑗𝑗� + ∑𝑘𝑘∈𝑆𝑆−{𝑗𝑗} 𝑝𝑝𝑗𝑗𝑗𝑗𝐸𝐸�𝛩𝛩𝑘𝑘𝑘𝑘2 � + 2 ∑𝑘𝑘∈𝑆𝑆−{𝑗𝑗} 𝑝𝑝𝑗𝑗𝑗𝑗𝐸𝐸(𝑇𝑇𝑘𝑘𝑘𝑘)𝐸𝐸�𝛩𝛩𝑘𝑘𝑘𝑘�,    𝑗𝑗 ∈ 𝑆𝑆. (29) 

The random variable 𝛩𝛩11 in our model denotes duration of one cycle whole operation.  
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4. Example  
 

A container with cargo is transported from Warsaw to Stockholm. From Warsaw to Gdynia, 
the container is transported by lorry, from Gdynia to Karlscorona by ferry and from Karlscorona to 
Stockholm by truck. The transport operation final part is unloading the container. To describe the 
transport operation we apply the model presented above, assuming  𝑛𝑛 = 3. Random variables 
denoting duration of the operation stages are:  
𝜉𝜉1 – duration of the container transport from Warsaw to Gdynia and loading on the ferry,  
𝜉𝜉2 – duration of the container transport from Gdynia to Karlscorona and unloading,  
𝜉𝜉3 – duration of the container loading on a truck, transport from Karlscorona to Stockholm and 

unloading at the destination 
We assume the expectations and standard deviations of these random variables are:  

𝐸𝐸(𝜉𝜉1) = 6.5,    𝐸𝐸(𝜉𝜉2) = 11.2,    𝐸𝐸(𝜉𝜉3) = 8.2,      [ ℎ ], 

𝐷𝐷(𝜉𝜉1) = 0,    𝐷𝐷(𝜉𝜉2) = 11.2,    𝐷𝐷(𝜉𝜉3) = 0,      [ ℎ ]. 

It means that the duration of the stage 𝑖𝑖 is determined, and it is equal to 𝑑𝑑𝑖𝑖 for 𝑖𝑖 = 1, 2, 3 and 
CDF of the random variables 𝜉𝜉𝑖𝑖 , 𝑖𝑖 = 1, 2, 3 are: 

𝐹𝐹𝜉𝜉𝑖𝑖(𝑡𝑡) = � 0     for  𝑡𝑡 ≤ 𝑑𝑑𝑖𝑖 ,
 1     for  𝑡𝑡 > 𝑑𝑑𝑖𝑖 ,     

 𝑖𝑖 = 1, 2, 3. 

In this case:  

𝑑𝑑1 = 𝐸𝐸(𝜉𝜉1) = 6.5,    𝑑𝑑2 = 𝐸𝐸(𝜉𝜉2) = 11.2,   𝑑𝑑3 =  𝐸𝐸(𝜉𝜉3) = 8.2.       
We also suppose that the failure rates on the transport stages are:  

∝1= 0.000028,    ∝2= 0.000014,    ∝3= 0.000022 �1
h
�, 

the perturbation rates are:  

𝜆𝜆1 = 0.000086,    𝜆𝜆2 = 0.000036,    𝜆𝜆3 = 0.000066 �
1
h
� 

and the failure rates on the transport stages during their perturbations are: 

𝛽𝛽1 = 0.000038,    𝛽𝛽2 = 0.000024,    β3 = 0.000032 �1
h
�. 

We also assume that the random variable 𝜁𝜁𝑖𝑖 , 𝑖𝑖 = 1, 2, 3 denoting time to resume the operation 
in stage 𝑖𝑖 has CDF:  

 𝐹𝐹𝜁𝜁𝑖𝑖(𝑡𝑡) = 1 − (1 + 𝛾𝛾𝑖𝑖𝑡𝑡)𝑒𝑒−𝛾𝛾𝑖𝑖𝑡𝑡      for   𝑡𝑡 ≥ 0,    𝑖𝑖 = 1, 2, 3, 

with parameters: 

𝛾𝛾1 = 0.5    𝛾𝛾2 = 0.8    𝛾𝛾3 = 0.4 �1
h
�. 

It means that:  

𝐸𝐸(𝜁𝜁1) = 2
0.5

= 4,     𝐸𝐸(𝜁𝜁2) = 2
0.8

= 2.5,     𝐸𝐸(𝜁𝜁3) = 2
0.4

= 5 [h]. 

In this case the elements of the matrix 𝑄𝑄(𝑡𝑡) are:  

𝑄𝑄3 1(𝑡𝑡) = �
0                         for    𝑡𝑡 ≤ 𝑑𝑑3,
𝑒𝑒−(𝜆𝜆3+∝3) 𝑑𝑑3      for    𝑡𝑡 > 𝑑𝑑3,

 

𝑄𝑄𝑖𝑖 𝑖𝑖+1(𝑡𝑡) = �
0                    for    𝑡𝑡 ≤ 𝑑𝑑𝑖𝑖 ,

𝑒𝑒−(𝜆𝜆𝑖𝑖+∝𝑖𝑖) 𝑑𝑑𝑖𝑖      for    𝑡𝑡 > 𝑑𝑑𝑖𝑖 ,   
    𝑖𝑖 = 1, 2, 
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𝑄𝑄𝑖𝑖0(𝑡𝑡) = �

∝𝑖𝑖
𝜆𝜆𝑖𝑖+𝛼𝛼𝑖𝑖

�1 − 𝑒𝑒−(𝜆𝜆𝑖𝑖+𝛼𝛼𝑖𝑖)𝑡𝑡� for  𝑡𝑡 ≤ 𝑑𝑑𝑖𝑖 ,
∝𝑖𝑖

𝜆𝜆𝑖𝑖+𝛼𝛼𝑖𝑖
�1 − 𝑒𝑒−(𝜆𝜆𝑖𝑖+𝛼𝛼𝑖𝑖)𝑑𝑑𝑖𝑖� for  𝑡𝑡 > 𝑑𝑑𝑖𝑖 ,

  𝑖𝑖 = 1, 2, 3,  

𝑄𝑄𝑖𝑖 3+i(𝑡𝑡) = �

𝜆𝜆𝑖𝑖
𝜆𝜆𝑖𝑖+𝛼𝛼𝑖𝑖

�1 − 𝑒𝑒−(𝜆𝜆𝑖𝑖+𝛼𝛼𝑖𝑖)𝑡𝑡� for  𝑡𝑡 ≤ 𝑑𝑑𝑖𝑖 ,
𝜆𝜆𝑖𝑖

𝜆𝜆𝑖𝑖+𝛼𝛼𝑖𝑖
�1 − 𝑒𝑒−(𝜆𝜆𝑖𝑖+𝛼𝛼𝑖𝑖)𝑑𝑑𝑖𝑖� for  𝑡𝑡 > 𝑑𝑑𝑖𝑖 ,

    𝑖𝑖 = 1,2,3, 

𝑄𝑄3+𝑖𝑖 0(𝑡𝑡) = 𝛽𝛽𝑖𝑖(𝛽𝛽𝑖𝑖+2𝛾𝛾𝑖𝑖−𝑒𝑒−𝑡𝑡(𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖)(𝛽𝛽𝑖𝑖+(2+𝑡𝑡𝛽𝛽𝑖𝑖)𝛾𝛾𝑖𝑖+𝑡𝑡𝛾𝛾𝑖𝑖
2))

(𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖)2
,    𝑖𝑖 = 1, 2, 3,  

𝑄𝑄3+𝑖𝑖 i(𝑡𝑡) = 𝛾𝛾𝑖𝑖
2(1−𝑒𝑒−𝑡𝑡(𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖)(1+𝑡𝑡(𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖)))

(𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖)2
, 𝑖𝑖 = 1, 2, 3, 

𝑄𝑄01(𝑡𝑡) = 1 − (1 + ν𝑡𝑡)𝑒𝑒−ν 𝑡𝑡      for   t ≥ 0.  

The embedded Markov chain {𝑋𝑋(𝜏𝜏𝑛𝑛):  𝑛𝑛 = 0,1, … of the semi-Markov process  {𝑋𝑋(𝑡𝑡): 𝑡𝑡 ≥ 0} 
has transtion probability matrix given by: 

𝑃𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0 0
𝑝𝑝10 0 𝑝𝑝12 0 𝑝𝑝14 0 0
𝑝𝑝20 0 0 𝑝𝑝23 0 𝑝𝑝25 0
𝑝𝑝30 𝑝𝑝31 0 0 0 0 𝑝𝑝36
𝑝𝑝40 𝑝𝑝41 0 0 0 0 0
𝑝𝑝50 0 𝑝𝑝52 0 0 0 0
𝑝𝑝60 0 0 𝑝𝑝63 0 0 0

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

where: 

𝑝𝑝10 =
𝜆𝜆1

𝜆𝜆1 + 𝛼𝛼1
�1 − 𝑒𝑒−(𝜆𝜆1+𝛼𝛼1) 𝑑𝑑1�, 𝑝𝑝12 = 𝑒𝑒−(𝜆𝜆1+𝛼𝛼1) 𝑑𝑑1 , 𝑝𝑝14 =

𝛼𝛼1
𝜆𝜆1 + 𝛼𝛼𝑖𝑖

�1 − 𝑒𝑒−(𝜆𝜆1+𝛼𝛼1) 𝑑𝑑1�,

𝑝𝑝20 =
𝜆𝜆2

𝜆𝜆2 + 𝛼𝛼2
�1 − 𝑒𝑒−(𝜆𝜆2+𝛼𝛼2) 𝑑𝑑2�, 𝑝𝑝23 = 𝑒𝑒−(𝜆𝜆2+𝛼𝛼2) 𝑑𝑑2 , 𝑝𝑝25 =

𝛼𝛼2
𝜆𝜆2 + 𝛼𝛼2

�1 − 𝑒𝑒−(𝜆𝜆2+𝛼𝛼2) 𝑑𝑑2�,

𝑝𝑝30 =
𝜆𝜆3

𝜆𝜆3 + 𝛼𝛼3
�1 − 𝑒𝑒−(𝜆𝜆3+𝛼𝛼3) 𝑑𝑑3�, 𝑝𝑝31 = 𝑒𝑒−(𝜆𝜆3+𝛼𝛼3) 𝑑𝑑3 , 𝑝𝑝36 =

𝛼𝛼3
𝜆𝜆3 + 𝛼𝛼3

�1 − 𝑒𝑒−(𝜆𝜆3+𝛼𝛼3) 𝑑𝑑3�,

 

𝑝𝑝3+i 0 =   𝛽𝛽𝑖𝑖
2+2 𝛽𝛽𝑖𝑖 𝛾𝛾𝑖𝑖

(𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖)2
,       𝑝𝑝3+i i =   𝛾𝛾𝑖𝑖

2

(𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖)2
,        𝑖𝑖 = 1, 2, 3.  

 𝐺𝐺0(𝑡𝑡) = 𝑃𝑃(𝑇𝑇0 ≤ 𝑡𝑡) = 𝑄𝑄01(𝑡𝑡) =  1 − (1 + 𝜈𝜈𝜈𝜈)𝑒𝑒−𝜈𝜈 𝑡𝑡      for   𝑡𝑡 ≥ 0, 

 𝐺𝐺1(𝑡𝑡) = 𝑃𝑃(𝑇𝑇1 ≤ 𝑡𝑡) = 𝑄𝑄10(𝑡𝑡) + 𝑄𝑄12(𝑡𝑡) + 𝑄𝑄14(𝑡𝑡) = 1 − 𝑒𝑒−(𝜆𝜆1+∝1) 𝑡𝑡 𝐼𝐼[0,𝑑𝑑1)(𝑡𝑡), 

 𝐺𝐺2(𝑡𝑡) = 𝑃𝑃(𝑇𝑇2 ≤ 𝑡𝑡) = 𝑄𝑄20(𝑡𝑡) + 𝑄𝑄23(𝑡𝑡) + 𝑄𝑄25(𝑡𝑡) = 1 − 𝑒𝑒−(𝜆𝜆2+∝2) 𝑡𝑡 𝐼𝐼[0,𝑑𝑑2)(𝑡𝑡) , 

 𝐺𝐺3(𝑡𝑡) = 𝑃𝑃(𝑇𝑇3 ≤ 𝑡𝑡) = 𝑄𝑄30(𝑡𝑡) + 𝑄𝑄31(𝑡𝑡) + 𝑄𝑄36(𝑡𝑡) = 1 − 𝑒𝑒−(𝜆𝜆3+∝3) 𝑡𝑡𝐼𝐼[0,𝑑𝑑3)(𝑡𝑡) , 

𝐺𝐺3+𝑖𝑖(𝑡𝑡) =  𝑄𝑄3+𝑖𝑖 i(𝑡𝑡) + 𝑄𝑄3+𝑖𝑖 0 (t) = 1 − 𝑒𝑒− 𝛽𝛽𝑖𝑖𝑡𝑡(1 + 𝛾𝛾𝑖𝑖𝑡𝑡)𝑒𝑒−𝛾𝛾𝑖𝑖𝑡𝑡 ,    𝑖𝑖 = 1, 2, 3. 
The corresponding expected values are: 

𝐸𝐸(𝑇𝑇0) =  𝐸𝐸( 𝜅𝜅) = 2
𝜈𝜈

, 

𝐸𝐸(𝑇𝑇𝑖𝑖) = 𝐸𝐸(min(𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑖𝑖 ,𝜗𝜗𝑖𝑖)) = ∫ 𝑒𝑒−(𝜆𝜆𝑖𝑖+∝𝑖𝑖) 𝑡𝑡𝐼𝐼[0,𝑑𝑑𝑖𝑖)(𝑡𝑡)𝑑𝑑𝑑𝑑 = 1
𝜆𝜆𝑖𝑖+∝𝑖𝑖

(1 − 𝑒𝑒−(𝜆𝜆𝑖𝑖+∝𝑖𝑖) 𝑑𝑑𝑖𝑖 ,    𝑖𝑖 = 1, 2, 3∞
0 , 

𝐸𝐸(𝑇𝑇3+𝑖𝑖) = 𝐸𝐸( min (𝜗𝜗3+𝑖𝑖 , 𝜁𝜁𝑖𝑖)) =   ∫  𝑒𝑒−(𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖)𝑡𝑡 (1 + 𝛾𝛾𝑖𝑖𝑡𝑡) 𝑑𝑑𝑑𝑑  =  𝛽𝛽𝑖𝑖+2𝛾𝛾𝑖𝑖
(𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖)2

∞
0 ,      𝑖𝑖 = 1, 2, 3.  
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The expected values of holding times are: 

E(𝑇𝑇3+𝑖𝑖 0)= 𝛽𝛽𝑖𝑖(𝛽𝛽𝑖𝑖+3𝛾𝛾𝑖𝑖)
(𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖)(𝛽𝛽𝑖𝑖

2+2𝛽𝛽𝑖𝑖 𝛾𝛾𝑖𝑖)
,          𝐸𝐸(𝑇𝑇3+𝑖𝑖 𝑖𝑖) = 2

𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖
,           𝑖𝑖 = 1, 2, 3. 

The first passage time from the state 𝑖𝑖, 𝑖𝑖 = 1, 2, 3, 4, 5, 6 to the state 0, which is denoted as, 
  Θ𝑖𝑖0  represents a time to failure of the operation if the initial state is 𝑖𝑖. We will compute the 
expected values, the second moments and the standard deviations of these random variables. The 
equations (25) and (26) allow computing the expected values and second moments of these 
random variables. Using the own program in MATHEMATICA computer system we obtain: 

 E(Θ10) = 17227.5 E(Θ102 ) = 593597442.5, 
 E(Θ20) = 17230.6 E(Θ202 ) = 593705316.6, 
 E(Θ30) = 17226.3 E(Θ302 ) = 593558730.6, 
 E(Θ40) = 17228.9 E(Θ402 ) = 593645038.7, 
 E(Θ50) = 17232.2 𝐸𝐸(Θ502 ) = 593755850.8, 
 E(Θ60) = 17228.6 𝐸𝐸(Θ602 ) = 593636004.7. 

Under assumption that the initial state of the operation is 1 the mean time to failure of the 
operation is: 

𝐸𝐸(𝑇𝑇) = 𝑇𝑇� = 17227.5  [h]. 
In this case the standard deviation of the time to failure of the operation is:  

𝐷𝐷(𝑇𝑇) = 𝐷𝐷(Θ17) = 17228.2 [h]. 
Notice that the expected value and standard deviation are almost equal. Taking under 

consideration this fact and theorems of the perturbation theory [4] we can suppose that time to the 
transport operation failure is approximately exponentially distributed with parameter:  

𝜆𝜆 =
1

𝐸𝐸(𝑇𝑇)
. 

Therefore the approximate reliability function of the transport operation is:  

𝑅𝑅(𝑡𝑡) ≈ 𝑒𝑒−0.000058 𝑡𝑡. 

A random variable 𝛩𝛩11 denotes the first return time to the initial state 1. The random variable 
𝛩𝛩11 in our model denotes duration of the one cycle of whole operation. The expected value and 
second moment we can calculate using equations (28) and (27). 
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