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ABSTRACT 

Survival analysis deals with statistical modelling of time elapsed between a particular moment and an expected event. The event is referred to as a result or 
an end point. 
The data used in survival analysis may also be treated as the time until an event occurs, time of survival, time until a failure, time of reliability, duration, etc. 
An analysis of such data is equally important for medicine 1, social sciences2 and engineering3. 
Survival analysis can also be applied to diving [1]. The article presents the basics of survival analysis which will serve in estimating the probability of an 
occurrence of central oxygen toxicity symptoms, which will be listed in the fourth part of the cycle of articles. 
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1 e.g. analysis of the time between treatment commencement and illness recurrence, death, etc.
2 e.g. time of unemployment, the age of giving birth to the first child, etc.
3 e.g. time until damaging of an element of equipment, time of failure-free operation, etc.
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SYSTEM RESPONSE 

The time interval between a particular starting point and the occurrence of an expected event may be treated as  
a random variable  constituting a system response  referred to as the survival time4. It should be noted that the starting 
point in the said time interval should be precisely defined, as there usually exist several possibilities for its determination5. 

Time is a continuous variable, therefore the survival time  is also commonly treated as a continuous random 
variable. In practice, however, it is noted down with accuracy to a certain period6 and often expressed in discrete scale7. 

Survival analysis consists of statistical reasoning concerning the distribution function  of the survival time  and 
commonly concerns its simple estimation based on a single homogeneous random sample, juxtaposition of the survival time 

 between two samples8, or modelling of the distribution function  as a potential function of several explanatory variables. 
These issues are no different from typical statistical reasoning and modelling, however the reasons for the special approach 
to survival analysis9 are as follows: 
-  data for survival analysis are often censored10 
- standard distributions of a random variable11 tend not to provide an adequate model of the distribution function  of 
survival time . 

CENSORED DATA 

In examining an exemplary problem situation concerning the patient's reaction time to the applied treatment, the 
most common starting point is the patient's inclusion in the group after his/her admittance to hospital treatment. Next, the 
time  until an interesting event occurs is determined – e.g. the patient's death12.  

In practice we deal with complete13 and censored data. With regard to those patients who do not die it is obvious 
that their survival time  must be longer than the observation time . This type of data is known as right-censored data – the 
true value of survival time  is placed on the right side14. For numerous reasons15,  this constitutes the most common type of 
censored data obtainable. 

Another type of incomplete data are interval- or left-censored data. In the case of interval-censored data the survival 
time  is not completely known, however it is possible to determine the time interval in which it is included . This 
means that the expected event within the time  has not been observed but it still occurred before the lapse of that time . 
For this reason all we may say about time  is that it is included in the given interval . Data of this kind often appear in 
sociological studies conducted in relation to a particular time interval. If the initial value for interval-censored data is equal to 
zero , this type of data is known as left-censored data. When studies consist in determining the occurrence of  
a particular event in a person's life, the obtained data are always left- or right-censored. 

An important feature, distinguishing survival analysis from many other methods concerned with mathematical 
statistics, is that censored data can in fact be used and, moreover, may carry significant information on the nature of a given 
event. However, this is not a rule and requires great caution. As it was mentioned earlier, if we define time  as an end point of 
the conducted studies, then for  the data will be censored, whereas for  they will be complete. When time  is 
determined during the process of testing, or it is decided in advance that the studies will be interrupted when a proper 
number of expected events occurs, such a censoring mechanism will not bring relevant data into survival analysis17 and they 
will be excluded from the analysis although, in this case, the survival time  is not entirely independent of the time of data 
censoring 18. The mechanisms of data censoring, quite significant in survival analysis, appear if they are functionally 
connected with survival time, e.g. patient withdrawal from studies due to a reason influencing the survival time19. 

Data-censoring mechanisms are also significant when the patient's reaction to applied treatment is negative. 

4 depending on the analysed system it may be referred to as a time of failure-free operation, duration, awaiting or response 
5 for example, when determining the survival rate after a heart attack the starting point may be related to the time of symptoms occurrence, 
admittance to hospital, commencement of particular treatment, etc. 
6 a day, hour, minute, etc. 
7 for example, for the reliability technique it may be expressed as the number of cycles performed by a machine until failure occurrence 
8 e.g. for two alternative kinds of treatment 
9 distinguishing survival analysis from similar, earlier mentioned problem situations 
10 the data are referred to as being censored as their content cannot be accurately determined – it will be discussed later 
11 e.g. binominal, norma., F,2, t, etc. 
12 in typical statistical reasoning it would be required to wait until the patient's death, however this may take many years or decades, which 
means that sometimes awaiting the determined end point in the study becomes unrealistic 
13 e.g. survival time may be determined for deceased patients 
14 i.e. when survival time  exceeds the end point of the studies , we know that survival time  is located within  
15 patient may be withdrawn from the programme, it is possible to lose contact with the patient after completing a cycle of tests, there is no 
economic or practical justification for continued monitoring of the patient until the occurrence of the planned end point, etc. 
17 in practice there are often irregularities
18 a sufficient condition for data not to bring significant information on the nature of an event is the fact of independence of survival time  of 

an end moment 
19 due to illness or loss of contact with a cured patient or due to his absence during scheduled appointments
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We must not exclude censored data from survival analysis, as this could cause potentially serious deviations in the 
reasoning20; however, the presence of certain types of such data imposes the necessity to apply special analytical methods. 
On occasion, we may analyse a situation when neither complete nor censored data are possible to register. This situation 
takes place when it is required to undertake reasoning concerned with the time until a failure of a machine, which had been 
stopped due to an invalid certificate allowing its further operation or for the purpose of carrying out obligatory overhaul. 
Such data are referred to as truncated data and require special methods of analysis, which will not be discussed here. 

SURVIVAL TIME DISTRIBUTION FUNCTION 

The distribution function  of the survival time as a random variable  should be continuous and a positive-definite. 
These conditions are met, for example, by the distribution function of 21: 

Tab. 1 

Generalised Gamma distribution. 

a c Distribution Distribution density 

1 1 Exponential 

1 c Gamma 

2 2 Reyleigh 

a a Weibull 

2 3 Maxwell 

(1) 

where: distribution function, probability distribution density, frequency, time 

Tab. 2 shows the most common distributions applied in survival analysis. The most common distribution in modelling 
relationships in survival analysis is  distribution for which probability density  may be expressed as: 

(2) 

where: constant. 

Parameter  from equation (2) is responsible for the shape and density  for the scale of probability density for 

distribution – fig. 1. The mean  for  distribution amounts to: 

20 similarly, consideration of "improperly" censored data may produce inadequate results of reasoning 
21 of generalised Γ distribution - tab.1
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Tab.  2 

Examples of the statistical distributions used in survival analysis [2]. 

Distribution 

Distribution 
function Density Mean Variance Survival 

function 
Hazard 

function 

Cumulative 
hazard 

function 

exponential 

logistic 

Ryleigh 

Weibull 

Fig. 1. Probability distribution density  for  distribution with various values of parameter a and frequency  . 

(3) 

and variance : 

(4) 

For , the density  of  d istr ib ut ion  takes the form of an exponential function with the mean value of:  . 

EXPONENTIAL DISTRIBUTION 

In the case of binominal distribution, probability  of an event occurrence in the situation of a lack of  of 
undesirable incidents22 with  events23 may be expressed as24:  where  stands for probability in 

22 e.g. the occurrence of symptoms 
23 for instance, with  time periods – see the following part 
24 as it will be indicated later, beginning with a inversed event simplifies derivation of the hazard distribution function
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the form of risk of occurrence of an adverse phenomenon. If we want to express probability in the function of time 
 we may divide the observation period  into a series of intervals . Assuming that the hazard value  25 

remains unchanged  in the entire observation time , then with number  of intervals  going towards 

infinity, the probability  will be equal to zero26: 

Based on the fact that the risk  is unchangeable, , the frequency  of occurrence of adverse phenomena 
also remains unchanged: . According to frequency-related definition of probability and the previous assumption of 
risk un-changeability, , we may write down what follows (3): 

(5) 

where:  risk,  expected value  average number of cases  with the population number , time interval constituting accuracy 

with which the time lapse is calculated,  population number. 

For the discrete dependent variable  of the expected mean of the number of cases  in the function of the 
discrete independent variable with regard to the number of observations , we may replace the continuous dependent risk 
variable  in the function of independent variable of number  of equal intervals , with the proportionality factor of 
frequency  defined according to (5): 

(6) 

By inserting equation (6) determining the risk  into the relation:  and using 

the definition of exponential function27  we will obtain: 

(7) 

where: probability, number of events in a sample of . 

Distribution function  for probability (7) will be expressed by using the definition of inverse probability:  

(8) 

and the density  of exponential distribution will be obtained by differentiation of the distribution function  from relation 

(8): . By integration of density  in the range from zero to infinity it is possible to 

demonstrate that the exponential distribution is regular28. 

WEIBULL DISTRIBUTION 

Probability of surviving additional time  with current lifetime equal to  constitutes conditional probability: 

(9) 

The numerator from equation (9) stands for the probability of survival of combined time , thus the relation (9) may be 
transformed into: 

(10) 

25 e.g. the risk of symptom occurrence 
26 there is always even the slightest risk, hence postulating the risk value at a zero level  is in conflict with observed reality 
27 exponential 
28 
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From relation (10) it stems that the conditional probability of surviving additional time with regard to exponential 
distribution 29 is not a function of current survival time : . This is defined as the independence of 
exponential distribution of current age30: ; however, it remains in conflict with 
documented experience31.  

By modifying the approach in the derivation of the formula used in the calculation of density of probability 
distribution  we may improve the properties of exponential distribution  by assuming that the 
probability of event occurrence for a single  sample32 is proportionate to its duration time  and independent of 
the size of the sample – fig. 2. If we assume that the probability of event occurrence in that sample may be expressed as: 

, where the frequency  of event occurrence is increased  with ageing of an organism or device. 
Hence, with the assumption of sample independence, the probability of a lack ( ) of adverse events in  samples will be 
expressed as the product: 

Fig. 2. Probability distribution density  for  distribution with for various values of parameter  and frequency 
. 

(11) 

As before, it is possible to calculate the threshold for . It is convenient to do it after finding the 
logarithm for the expression (11): , from which the probability may be approximated to: 

 . For the smallest values of we may estimate the limit: 
. Therefore, we may write that , and hence by 

transformation we will obtain probability relationship  with regard to the lack of unfavourable cases in the 

function of time : . Based on this, similarly to relationship (8), we may express the 

distribution function  by use of definition of inverse probability: . Distribution density  in 

this case will amount to: 

(12) 

In particular, for probability distribution density  from formula (12), when frequency  of occurrence of an 

adverse phenomenon is not the function of time , the relationship (12) expresses the density for exponential 
distribution. For  the relationship (12) expresses the density of Weibull distribution [4]: 

(13) 

29 with current lifetime equal to 
30 the remaining lifetime  does not depend on the past and has the same exponential distribution as current survival time 
31 usually, after reaching a certain age people die and machines begin to fail 
32 e.g. during a single diving cycle
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SURVIVAL TIME DISTRIBUTION DENSITY 

For continuous random variable  standing for survival time, from the function of probability distribution density 
we may determine probability distribution for the occurrence of time  in the interval :  . 

The distribution function  of time T is defined with the formula: 

(14) 

In survival analysis it is often preferable to apply three alternative probability functions defining the distribution of random 
variable :  ,   and . 

SURVIVAL FUNCTION 

Survival function  defines the probability of surviving33 longer than a certain average time   34: 

(15) 

where: survival function. 

Survival function35  is a non-increasing continuous function, for which . In Weibull distribution the 
survival function  is expressed with the relationship: . Fig.3 demonstrates survival functions 
for  distribution with different values of parameter  and frequency .  

The expected survival time  is related to survival function  with the following formula: , hence 
this value is represented by the field below the survival function .  

Fig. 3. Survival function in  distribution for different values of parameter  and frequency . 

HAZARD FUNCTION 

In concord with the definition of conditional probability we may write down: 

(16) 

where: hazard function 

33 probability of failure-free operation, survival, occurrence and other defined events, etc. 
34 for example, expresses probability that a given person will survive until the time  
35 In technique the equivalent of survival function S(t) serves to determine reliability and is referred to as s af e t y  r e l i a b i l i t y  f u n c t i o n  [5]
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In relationship (16) function  is defined as :  . From relationship (16) it is possible to present 

hazard function , as the limit of condition probability per unit of time: 

(17) 

Hazard function  represents the probability that survival time  will fall near the selected time , however not before that 
time36. It describes the intensity of failure for particular time37 .  

Fig. 4. Hazard function  in  distribution for different values of parameter  and frequency . 

Hazard function  provides the value of probability per unit of time (17), therefore it is possible that a situation occurs38, 
when its value will be greater than . For  this function is expressed with the equation:  . Fig. 4 
depicts selected shapes of hazard function  for  distribution with different values of parameter  and frequency 

.  

CUMULATIVE HAZARD FUNCTION 

Cumulative hazard function  may be defined as an integral from hazard function : 

(18) 

where: cumulative hazard function. 

For  it will be expressed with relationship: . 

RISK FUNCTION 

In technology, hazard function  is sometimes referred to as risk function  or da ma g e in te ns it y   and 
defined as quotient of probability density of the time of operation of a given element  in the point  and the probability 
for which the time of operation of an element is at least equal to : 

36 Hazard function value  is to be treated as a potential for the occurrence of an expected event (usually a failure) illustrating  a problem 

situation analysis characterised by survival function – when function  decreases the  increases. Function  may be 
compared to a speedometer in a car. Based on its indications we may conclude what distance will be covered after the lapse of a certain 
period of time – the constant value of function  may be established on the basis of the number of expected events within a 
selected period of time
37 in safety technology, hazard function h(t) is defined as an i n t e  n s  i t y  o f  s  a f  e  t y  f  a i l u r e  and often expressed as  [5] 
38 depending on the adopted units of time
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(19) 

where: risk function. 

For discreet distribution of damage intensity probability  we may write:  . By 

differentiation of survival function we may demonstrate an interesting relationship: 

 , which with regard to relationship (19) gives: 

 . This, in consequence results in the 

following relationships: 

(20) 

Equation (20) is called . In safety technology, cumulative hazard function  is referred to as safety 
unreliability distribution function. 

INTERFUNCTIONAL RELATIONSHIPS

In summary of the review of basic functions used in survival analysis, we may conclude that it is sufficient to provide 
one of them to enable a description of others, as they are related by the relationships collectively presented in tab 3.  

Survival analysis most commonly operates with survival S  and hazard functions 39. We know from practice
that reliable estimation of specific functions in survival analysis can be performed if the sample size is larger than , 
otherwise the results will be burdened. 

Tab.  3 

Useful relationships for more common functions in survival analysis. 

distribution function 
hazard function 
cumulative hazard function 

probability density 
risk function 
survival function 

Despite the convergence of the formulae used in calculating characteristic parameters of the discussed time 
intervals, there are certain differences in their interpretation with regard to reliability theory, safety analysis or other 
applications of survival analysis40. 

HAZARD 

 may represent the probability of occurrence of  or  symptoms in the function of time . 

Using the relationship  and  it is possible to express the 

distribution function  of the probability of occurrence of  or  symptoms in the function of time with the value 
of risk function :  

39 one of the important reasons for using the hazard function  rests in the fact that conditional distribution of anticipated survival 

beyond time  may be calculated from it directly for 
40 for example, the measurement of reliability is probability of fulfilling the requirements related to the system in a unit of time, whereas the 
measure of hazard is the probability of occurrence of an unfavourable situation for the surrounding space-time system
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(21) 

where:  hazard function of  or  symptoms equal to distribution function of survival time . 

An integral of risk function  from the moment  until  is defined by integral risk of occurrence of a case of 
 or  within this period of time. Thus, the value of risk function  from equation (21) will be specified by the 

value of hazard function  of occurrence of  or  symptoms. The values of the parameters of risk function 
may be defined by its adjustment to experimental data. Integration limits may also be spread over several hours after diving 
completion. 

In applying survival analysis in mathematical modelling of the risk  and hazard function  of occurrence of 
 and  symptoms it is required that these two terms are distinguished. Risk  is identified with the probability of 

occurrence of  or , whereas the hazard of occurrence of  is identified with completion of survival function 
constituting the distribution function of survival time: . Hazard  is the probability of occurrence of  or 

 on condition of accepting the risk level  of occurrence of  or . 

CONCLUSIONS 

The methods of survival analysis were introduced into diving problematique by Weathersby and Thalmann [1]. The model of 
threat prediction  of the probability of  occurrence proposed by the  resulting from that theory seems to 
be sufficiently accurate. It will be presented in detail in the next article of the series. The article is the third part of the series 
including the results of research conducted by the Polish Naval Academy in Gdynia financed from educational fund for the 
years 2009 -  2011 within the developmental  project No .O R00 0001 08 entitled: Decompression planning in 
combat missions. 
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