PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy efficient small inland passenger shuttle ferry with hybrid propulsion - concept design, calculations and model tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, there has been a significant development in “green” and energy efficient propulsion systems, which fits into the general trend of environmentally friendly “green shipping”. The pursued goal is to construct a safe passenger ship that is low in energy demand and equipped with a highly energy efficient, emission-free propulsion system. The paper presents main problems encountered by designers of a small, hybrid-powered ferry powered lithium batteries. The conducted research allowed to create a design of an energy efficient hull shape, which decreases the demand for energy. Completed remote control model tests resulted in a proposal of an energy efficient and safe propulsion system with good manoeuvring capabilities. Measurements completed on an existing ferry permitted completing energy balance and forming an energy management policy. The paper contains the emission calculations computed for the existing ferry that are necessary for the environmental impact analysis. The soon to be constructed, newly designed vessel will provide a valuable contribution to hybrid-propulsion, energy management and unmanned technologies research.
Rocznik
Tom
Strony
85--92
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology Narutowicza 11/12, 80-233 Gdańsk Poland
  • Gdańsk University of Technology Narutowicza 11/12, 80-233 Gdańsk Poland
Bibliografia
  • 1. H.N. Psaraftis, Green Maritime Logistics: The Quest for Win-win Solutions, Transp. Res. Procedia. 14 (2016) 133– 142. doi:10.1016/j.trpro.2016.05.049.
  • 2. C. Sys, T. Vanelslander, M. Adriaenssens, I. Van Rillaer, International emission regulation in sea transport: Economic feasibility and impact, Transp. Res. Part D Transp. Environ. 45 (2014) 139–151. doi:10.1016/j. trd.2015.06.009.
  • 3. J. Lister, R.T. Poulsen, S. Ponte, Orchestrating transnational environmental governance in maritime shipping, Glob. Environ. Chang. 34 (2015) 185–195. doi:10.1016/j. gloenvcha.2015.06.011.
  • 4. W. Sihn, H. Pascher, K. Ott, S. Stein, A. Schumacher, G. Mascolo, A Green and Economic Future of Inland Waterway Shipping, Procedia CIRP. 29 (2015) 317–322. doi:10.1016/j.procir.2015.02.171.
  • 5. P. Gilbert, P. Wilson, C. Walsh, P. Hodgson, The role of material efficiency to reduce CO2 emissions during ship manufacture: A life cycle approach, Mar. Policy. 75 (2016) 227–237. doi:10.1016/j.marpol.2016.04.003.
  • 6. S.I. Salem A., TECHNO-ECONOMIC APPROACH TO SOLAR ENERGY SYSTEMS ONBOARD MARINE VEHICLES, Polish Marit. Res. 23 (2016) 64–71. doi:0.1515/ pom r-2016 - 0033.
  • 7. D. Borelli, T. Gaggero, E. Rizzuto, C. Schenone, Analysis of noise on board a ship during navigation and manoeuvres, Ocean Eng. 105 (2015) 256–269. doi:10.1016/j. oceaneng.2015.06.040.
  • 8. A. Badino, D. Borelli, T. Gaggero, E. Rizzuto, C. Schenone, Airborne noise emissions from ships: Experimental characterization of the source and propagation over land, Appl. Acoust. 104 (2016) 158–171. doi:10.1016/j. apacoust.2015.11.005.
  • 9. A.M. Bassam, A.B. Phillips, S.R. Turnock, P.A. Wilson, Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship, Int. J. Hydrogen Energy. (2016) 1–13. doi:10.1016/j. ijhydene.2016.08.209.
  • 10. L.K. Mitropoulos, P.D. Prevedouros, Life cycle emissions and cost model for urban light duty vehicles, Transp. Res. Part D Transp. Environ. 41 (2015) 147–159. doi:10.1016/j. trd.2015.09.024.
  • 11. E.K. Dedes, D.A. Hudson, S.R. Turnock, Investigation of Diesel Hybrid systems for fuel oil reduction in slow speed ocean going ships, Energy. 114 (2016) 444–456. doi:10.1016/j.energy.2016.07.121.
  • 12. J.J. De-Troya, C. Álvarez, C. Fernández-Garrido, L. Carral, Analysing the possibilities of using fuel cells in ships, Int. J. Hydrogen Energy. 41 (2016) 2853–2866. doi:10.1016/j. ijhydene.2015.11.145.
  • 13. Y.M.A. Welaya, M.M. El Gohary, N.R. Ammar, A comparison between fuel cells and other alternatives for marine electric power generation, Int. J. Nav. Archit. Ocean Eng. 3 (2011) 141–149. doi:10.3744/JNAOE.2011.3.2.141.
  • 14. N.C. Shih, B.J. Weng, J.Y. Lee, Y.C. Hsiao, Development of a 20 kW generic hybrid fuel cell power system for small ships and underwater vehicles, Int. J. Hydrogen Energy. 39 (2014) 13894–13901. doi:10.1016/j.ijhydene.2014.01.113.
  • 15. V. Alfonsin, A. Suarez, S. Urrejola, J. Miguez, A. Sanchez, Integration of several renewable energies for internal combustion engine substitution in a commercial sailboat, Int. J. Hydrogen Energy. 40 (2015) 6689–6701. doi:10.1016/j. ijhydene.2015.02.113.
  • 16. J. Kowalski, W. Leśniewski, W. Litwin, Multi-sourcesupplied parallel hybrid propulsion of the inland passenger ship STA.H. Research work on energy efficiency of a hybrid propulsion system operating in the electric motor drive mode, Polish Marit. Res. 20 (2013) 20–27. doi:10.2478/ pomr-2013-0031.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cdd63d8-fc85-4904-842f-4b80d9ad6fbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.