PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Direct numerical simulations of particle-laden isotropic turbulence. Pseudo-spectral solver

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work an in-house pseudo-spectral direct numerical simulations solver for particle-laden forced isotropic turbulence is developed. The code has been validated against the results of a decaying three-dimensional Taylor-Green vortex field at moderate Reynolds number. The solver can be relatively easily adapted for large-eddy simulations using the concept of spectral eddy-viscosity. The solver is coupled with the Lagrangian particle tracking of a dispersed phase essentially approximated by point-particles whose particle-to-fluid density ratio is O(103). High order Lagrange interpolation and combined implicit-explicit time-integration scheme are used to solve the particle equation of motion.
Rocznik
Tom
Strony
13--23
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences 14 Fiszera Street, 80-231 Gdansk, Poland
Bibliografia
  • [1] J. Kuerten, “Point-particle DNS and LES of particle-laden turbulent flow – a stateof-the-art review,” Flow, Turbulence and Combustion, vol. 97, pp. 689–713, 2016.
  • [2] S. Elghobashi, “Direct numerical simulation of turbulent flows laden with droplets or bubbles,” Annual Review of Fluid Mechanics, vol. 51, pp. 217–244, 2019.
  • [3] W. McComb, The Physics of Fluid Turbulence. Oxford University Press, Oxford.
  • [4] O. Reynolds, “On the dynamical theory of incompressible viscous fluids and the determination of the criterion,” Philosophical Transactions of the Royal Society A, vol. 186, pp. 123–164, 1894.
  • [5] D. Leslie, Developments in the Theory of Turbulence. Clarendon Press, Oxford, 1990.
  • [6] S. Orszag, “Numerical methods for the simulation of turbulence,” Physics of Fluids, vol. 12, pp. II–250, 1969.
  • [7] J. Cooley and J. Tukey, “An algorithm for the machine calculation of complex fourier series,” Mathematics of Computation, vol. 19, pp. 297–301, 1965.
  • [8] C. Canuto, M. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics. Springer-Verlag, New York, 1987.
  • [9] G. Patterson Jr and S. Orszag, “Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions,” Physics of Fluids, vol. 14, pp. 2538–2541, 1971.
  • [10] S. Orszag, “Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representations,” Studies in Applied Mathematics, vol. 50, pp. 293–327, 1971.
  • [11] A. Witkowska, D. Juv´e, and J. Brasseur, “Numerical study of noise from isotropic turbulence,” Journal of Computational Acoustics, vol. 5, pp. 317–336, 1997.
  • [12] L. Machiels, “Predictability of small-scale motion in isotropic fluid turbulence,” Physical Review Letters, vol. 79, p. 3411, 1997.
  • [13] A. Young, Investigation of Renormalization Group Methods for the Numerical Simulation of Isotropic Turbulence. Ph.D. dissertation, University of Edinburgh, 2002.
  • [14] S. Yoffe, Investigation of the Transfer and Dissipation of Energy in Isotropic Turbulence. Ph.D. dissertation, University of Edinburgh, 2012.
  • [15] V. Eswaran and S. Pope, “An examination of forcing in direct numerical simulations of turbulence,” Computers & Fluids, vol. 16, pp. 257–278, 1988.
  • [16] N. Sullivan, S. Mahalingam, and R. Kerr, “Deterministic forcing of homogeneous, isotropic turbulence,” Physics of Fluids, vol. 6, pp. 1612–1614, 1994.
  • [17] A. Vincent and M. Meneguzzi, “The spatial structure and statistical properties of homogeneous turbulence,” Journal of Fluid Mechanics, vol. 225, pp. 1–20, 1991.
  • [18] L.-P. Wang and M. Maxey, “Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence,” Journal of Fluid Mechanics, vol. 256, pp. 27–68, 1993.
  • [19] T. Dairay, E. Lamballais, S. Laizet, and J. Vassilicos, “Numerical dissipation vs. subgrid-scale modelling for large eddy simulation,” Journal of Computational Physics, vol. 337, pp. 252–274, 2017.
  • [20] G. Taylor and A. Green, “Mechanism of the production of small eddies from large ones,” Proceedings of the Royal Society of f London. Series A-Mathematical and Physical Sciences, vol. 158, pp. 499–521, 1937.
  • [21] M. Maxey and J. Riley, “Equation of motion for a small rigid sphere in a nonuniform flow,” Physics of Fluids, vol. 26, pp. 883–889, 1983.
  • [22] L. Schiller and A. Z. Naumann, “Uber die grundlegenden berechungen bei der schw- ¨ erkraftaufbereitun,” Zeitschrift des Vereines Deutscher Ingenieure, vol. 77, pp. 318– 320, 1933.
  • [23] S. Balachandar and M. Maxey, “Methods for evaluating fluid velocities in spectral simulations of turbulence,” Journal of Computational Physics, vol. 83, pp. 96–125, 1989.
  • [24] J.-P. Chollet and M. Lesieur, “Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures,” Journal of Atmospheric Sciences, vol. 38, pp. 2747–2757, 1981.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cd209d4-7ec3-41aa-b61f-3f8820d67f47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.