Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The authors present results of a fatigue test for specimens made of the aluminium Allom 2017A-T4 and alloy steels S355J2WP and S355J2G3 subjected to constant-amplitude proportional combined bending with torsion including mean stress values and for the S355J2WP alloy steel under uniaxial constant-amplitude and random loading with both zero and non zero mean stress values. The test results were compared with the results of calculations according to the models proposed by Goodman, Gerber and Morrow as well as the stressstrain parameter. In the case of calculations based on the stresses, the multiaxial stress state was reduced to a uniaxial one using the Huber-Mises relationship. As for the method based on strain energy density, the multiaxial stress state was reduced to the uniaxial one with use of the stress-strain parameter. The plane in which the stress-strain parameter of shear loadings reaches its maximum value is assumed to be the critical plane.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
581--592
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Opole University of Technology, Opole, Poland
autor
- Opole University of Technology, Opole, Poland
Bibliografia
- 1. ASTM E 1049-85, 1997, Standard practices for cycle counting in fatigue analysis., Annual Book of ASTM Standards, 03.01, 710-718
- 2. ASTM E 739-91, 1998, Standard practice for statistical analysis of linearized stress-life (S-N) and strain life (ε-N) fatigue data, Annual Book of ASTM Standards, 03.01, 614-620
- 3. Downing S.D., Socie D.F., 1982, Simple rainflow counting algorithms, International Journal of Fatigue, 14, 31-40
- 4. Fatemi A., Socie D.F., 1988, A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue and Fracture of Engineering Materials and Structures, 11, 3, 149-165
- 5. Garud Y.S., 1982, Prediction of stress-strain response under general multiaxial loading, Mechanical Testing for Deformation Model Development, ASTM STP 765, 223-238
- 6. Gasiak G., Pawliczek R., 2001, The mean loading effect under cyclie bending and torsion of 18G2A steel, 6th Int. Conf. on Biaxial/Multiaxial Fatigue and Fracture, Lisboa, Portugal, M. Moriera de Freitas (Edit.), 213-222
- 7. Gerber W., 1874, Bestimmung der zulossigne Spannungen in eisen Constructionen, Z. Bayer Arch. Ing. Ver., 6
- 8. Glinka G., Shen G., Plumtree A., 1995, A multiaxial fatigue strain energy density parameter related to the critical fracture plane, Fatigue and Fracture of Engineering Materials and Structures, 18, 1, 37-64
- 9. Goodman J., 1899, Mechanics Applied to Engineering, New York, Longmans Green and Co.
- 10. Kardas D., Kluger K., Łagoda T., Ogonowski P., 2008, Fatigue life of aluminium allom 2017(A) under proportional constant amplitude bending with torsion in energy approach, Materials Science, 4, 68-74
- 11. Karolczuk A., Łagoda T., Macha E., 2002, Determination of fatigue life of 10HNAP and 1208.3 steels with the parameter of strain energy density, Proceedings of 8th International Fatigue Congress, EMAS, A.F. Blom (Edit.), 515-522
- 12. Kluger K., Łagoda T., 2004, Application of the Dang-Van criterion for life determination under uniaxial random tension-compression with different mean values, Fatigue and Fracture of Engineering Materials and Structures, 27, 505-512
- 13. Kluger K., Łagoda T., 2007, Fatigue lifetime under uniaxial random loading with different mean values according to some selected models, Materials and Design, 28, 2604-2610
- 14. Lazzarin P., Susmel L., 2003, A stress-based method to predict lifetime under multiaxial fatigue loadings, Fatigue and Fracture of Engineering Materials and Structures, 26, 12, 1171-1187
- 15. Łagoda T., 2001a, Energy models for fatigue life estimation under random loading – Part I – The model elaboration, International Journal of Fatigue, 23, 6, 467-480
- 16. Łagoda T., 2001b, Energy models for fatigue life estimation under random loading – Part II – The model elaboration, International Journal of Fatigue, 23, 6, 481-489
- 17. Łagoda T., Macha E., Pawliczek R., 2001, The influence of the mean stress on fatigue life of 10HNAP steel under random loading, International Journal of Fatigue, 23, 6, 283-291
- 18. Łagoda T., Ogonowski P., 2005, Criteria of multiaxial random fatigue based on stress, strain and energy parameters of damage in the critical plane, Materialwissenschaft und Werkstofftechnik, 36, 9, 429-437
- 19. Macha E., Łagoda T., Nieslony A., Kardas D., 2006, Fatigue life variable-amplitude loading according to the cycle counting and spectral methods, Materials Science, 42, 3, 416-425
- 20. Manual of Codes of Practice for the determination of uncertainties in mechanical tests on metallic materials, 2000, Project UNCERT, EU Contract SMT4-CT97-2165, Standards Measurement & Testing Programme, ISBN 0-946754-41-1, Issue 1
- 21. Miner M.A., 1945, Cumulative damage in fatigue, Journal of Appiled Mechanics, 12
- 22. Morrow J., 1968, In fatigue design handbook, Advances in Engineering, 4, Warrendale, PA, Society of Automotive Engineers
- 23. Mroz Z., 1967, On the description of anisotropic work hardening, Journal of Applied Physics of Solids 15, 163-175
- 24. Palin-Luc T., Lasserre S., 1998, An energy based criterion for high cycle multiaxial fatigue, European Journal of Mechanics – A/Solids, 17, 237-251
- 25. Palmgren A., 1924, Die Lebensdauer von Kugelagern, VDI-Z, 68, 41
- 26. Papadopoulos I.V., 1998, Critical plane approaches in high-cycle fatigue: on the definition of the amplitude and mean value of the shear stress acting on the critical plane, Fatigue and Fracture of Engineering Materials and Structures, 21, 269-285
- 27. Smith K., Watson P., Topper T., 1970, A stress-strain function for the fatigue of metals, ASTM Journal of Materials, 5, 767-779
- 28. Sonsino C.M., Łagoda T., Demofonti G., 2004, Damage accumulation under variable amplitude loading of welded medium- and high-strength steels, International Journal of Fatigue, 26, 5, 487-495
- 29. Sutherland H.J., Veers P.S., 2000, The development of confidence limits for fatigue strength data, Wind Energy, ASME/AIAA
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ccfdb26-0ed9-49fb-9829-78ac24d08031