PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bacterial selection of the Pseudomonas genus with the capacity to treat water and contaminated soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, bacteria of the Pseudomonas genus native to the Ecuadorian Amazon with the capacity to treat contaminated water and soils were selected. For this purpose, 20 soil samples from Amazon region with evidence of contamination were analysed. For identification, each sample was assigned a code according to the sampling area: Joya de los Sachas (S), Minga (M) and Siete de Julio-Shushufindi (SH). The cultures were performed in the combination of Bushnell Hass (BH) + Luria Bertani (LB) and Müeller-Hinton (MH) + Brucella agar (BA) media, all with the addition of diesel to verify their efficacy in the growth of bacteria capable of surviving in contaminated media. The combination with ideal results was that of BH + LB, by means of Gram-staining it was determined that 19 of the samples had interest microorganisms. To characterize the isolates at the species level, biochemical tests of: catalase, citrate, glucose, hemolytic activity and urease were applied, which allowed to confirm the existence of the Pseudomonas of interest. The results indicated that P. stutzeri (in samples S1 and M1), P. aeruginosa (in SH2 and SH5) and P. putida (in S7, S8, S10 and SH4) obtaining a total of 8 isolates (40%) of interest from the initial 19. With the results obtained from this work, an optimal culture method was standardized for the selection of bacteria with potential for treating contaminated soils and water.
Wydawca
Rocznik
Tom
Strony
238--241
Opis fizyczny
Bibliogr. 22 poz., tab.
Twórcy
  • State University of Bolívar, Faculty of Agricultural Sciences, Agroindustry Career, Biotechnological Research and Development Center, Km 3 1/2 sector Alpachaca, CP: 020150, Guaranda, Ecuador
  • San Pedro Educational Unit, Department of Education, Guaranda, Ecuador
  • State University of Bolívar, Faculty of Agricultural Sciences, Agroindustry Career, Biotechnological Research and Development Center, Km 3 1/2 sector Alpachaca, CP: 020150, Guaranda, Ecuador
  • State University of Bolívar, Faculty of Agricultural Sciences, Agroindustry Career, Biotechnological Research and Development Center, Km 3 1/2 sector Alpachaca, CP: 020150, Guaranda, Ecuador
  • State University of Bolívar, Faculty of Agricultural Sciences, Agroindustry Career, Biotechnological Research and Development Center, Km 3 1/2 sector Alpachaca, CP: 020150, Guaranda, Ecuador
Bibliografia
  • BANERJEE S., BATABYAL K., JOARDAR S.N., ISORE D.P., DEY S., SAMANTA I., SAMANTA T.K., MURMU S. 2017. Detection and characterization of pathogenic Pseudomonas aeruginosa from bovine subclinical mastitis in West Bengal, India. Veterinary World. Vol. 10(7) p. 738–742. DOI 10.14202/vetworld.2017.738-742.
  • BARNES D., FILLER D., SNAPE I. 2008. Bioremediation of petroleum-hydrocarbons in cold regions. Cambridge University. ISBN 9780511535956 pp. 273. DOI 10.1017/CBO9780511535956.
  • CHEN Q., LI J., LIU M., SUN H., BAO M. 2017. Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment. PLOS ONE. Vol. 12(3), e0174445. DOI 10.1371/journal.pone.0174445.
  • DANIS-WLODARCZYK K., VANDENHEUVEL D., JANG H.B., BRIERS Y., OLSZAK T., ARABSKI M., ..., DRULIS-KAWA Z. 2016. A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections. Scientific Reports. Vol. 6, 28115. DOI 10.1038/srep28115.
  • GE S., ZHU Z., JIANG Y. 2018. Long-term impact of fertilization on soil pH and fertility in an apple production system. Journal of Soil Science and Plant Nutrition. Vol. 18(1) p. 282–293. DOI 10.4067/S0718-95162018005001002.
  • GUAMÁN J.F., BAYAS-MOREJÓN I.F, ARCOS V., TIGRE-LEÓN A., LUCIO-QUINTANA A., SALAZAR S., GAIBOR-CHAVEZ J., RAMON CURAY R. 2018. Detection of Helicobacter pylori from human biological samples (feces) by antigenic screening and culture. Jundishapur Journal of Microbiology. Vol. 11(7), e66721. DOI 10.5812/jjm.66721.
  • HERNÁNDEZ-RUIZ G.M., ÁLVAREZ-OROZCO N.A., RÍOS-OSORIO L.A. 2017. Biorremediación de organofosforados por hongos y bacterias en suelos agrícolas: revisión sistemática [Organophosphorus bio-remediation by lice and bacteria in single agrocells: Systematic revision]. Corpoica Ciencia y Tecnologia Agropecuaria. Vol. 18 (1) p. 139–159. DOI 10.21930/rcta.vol18_num1 _art:564.
  • KELMENDI M., KADRIU S., SADIKU M., ALIU M., SADRIU E., HYSENI S.M. 2018. Assessment of drinking water quality of Kopiliq village in Skenderaj, Kosovo. Journal of Water and Land Development. No. 39 (X–XII) p. 61–65. DOI 10.2478/jwld-2018-0059.
  • LAGOS P.F. 2017. Petróleo, desarrollo y etnicidad [Oil, development and ethnicity]. Mundos Plurales-Revista Latinoamericana de Políticas y Acción Pública. Vol. 4(2) p. 27–27. DOI 10.17141/mundos-plurales.2.2017.3158.
  • MADDELA N.R., MASABANDA M., LEIVA-MORA M. 2015. Novel diesel-oil-degrading bacteria and fungi from the Ecuadorian Amazon rainforest. Water Science and Technology. Vol. 71(10) p. 1554–1561. DOI 10.2166/wst.2015.142.
  • MARTYNOV S., FYLYPCHUK V., ZOSHCHUK V., KUNYTSKYI S., SAFONYK A., PINCHUK O. 2018. Technological model of water contact iron removal. Journal of Water and Land Development. No. 39(1) p. 93–99. DOI 10.2478/jwld-2018-0063.
  • MAYS J., MANZI L. 2017. Bacterias hidrocarburoclásticas del género Pseudomonas en la rizosfera de Samanea saman (Jacq.) Merr. [Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr.]. Revista Colombiana de Biotecnología. Vol. 19(1) p. 29–37. DOI 10.15446/rev.colomb.biote.v19n1.57408.
  • MEENA S., KALAIVANI V., ABHISHEK D.T., RAMYAA L. 2020. Optimization and characterization of Alginic acid synthesized from a novel strain of Pseudomonas stutzeri. Biotechnology Reports. Vol. 27, e00517. DOI 10.1016/j.btre.2020.e00517.
  • PALANIVEL T.M., NALLUSAMY S., Al-ANSARI A., VICTOR R. 2020. Bioremediation of copper by active cells of Pseudomonas stutzeri LA3 isolated from an abandoned copper mine soil. Journal of Environmental Managemen. Vol. 253(1), 109706. DOI 10.1016/j.jenvman.2019.109706.
  • PAULSSON M., SU Y.-C., RINGWOOD T., UDDÉN F., RIESBECK K. 2019. Pseudomonas aeruginosa uses multiple receptors for adherence to laminin during infection of the respiratory tract and skin wounds. Scientific Reports. Vol. 9, 18168. DOI 10.1038/s41598-019-54622-z.
  • PRIETO M.A. 2007. From oil to bioplastics, a dream come true? Journal of Bacteriology. Vol. 189(2) p. 289–290. DOI 10.1128/JB.01576-06.
  • SEPÚLVEDA R.B., HARO I.R., CASTILLO M.S. 2014. Efecto del extracto hidroalcohólico de Punica granatum sobre la viabilidad de Staphylococcus aureus y Pseudomonas aeruginosa “in vitro” [Effect of the hydroalcoholic extract of Punica granatum on “in vitro” Staphylococcus aureus and Pseudomonas aeruginosa viability] [online]. Revista REBIOLEST. Vol. 2(1) p. 23–31. [Access 10.09.2021]. Available at: https://revistas.unitru.edu.pe/index.php/ECCBB/article/view/639
  • VARJANI S., UPASANI V., PANDEY A. 2020. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Science of the Total Environment Journal. Vol. 737(1), 139766. DOI 10.1016/j.scitotenv.2020.139766.
  • WASEN A. 2019. Biodegradation and phytotoxicity of crude oil hydrocarbons in an agricultural soil. Chilean Journal of Agricultural Research. Vol. 79(2) p. 266–277. DOI 10.4067/S0718-58392019000200266.
  • WEI Y., LI G. 2018. Effect of oil pollution on water characteristics of loessial soil IOP Conference. Ser. Earth and Environmental Science. Vol. 170(3), 032154.
  • XU X., LIU W., TIAN S., WANG W., QI Q., JIANG P., GAO X., LI F., LI H., YU H. 2018. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Frontiers in Microbiology. Vol. 9, 2885. DOI 10.3389/fmicb.2018.02885.
  • YUXIN Z., YOU C., FANG Z., JIACHENG W., WEIXIA G., TONG Z., CHAO Y. 2020. Development of an efficient pathway construction strategy for rapid evolution of the biodegradation capacity of Pseudomonas putida KT2440 and its application in bioremediation. Science of The Total Environment. Vol. 761, 143239. DOI 10.1016/j.scitotenv.2020.143239.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cccb2d9-5bac-4c29-82e6-93297fa1f620
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.