Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the kinematic synthesis of a parallel Gough-Stewart platform mechanism is addressed in order to achieve the motion of the working part of the mechanism along a prescribed trajectory. A virtual prototype of this platform was created in the environment of the dynamics of systems bodies program ADAMS. In the process of cosimulation of MATLAB, MATLAB/Simulink and ADAMS, the input trajectories of actuator velocities necessary to achieve the desired motion of the effector point were identified. The trajectory was defined by parametric equations for the epitrochoid, hypocycloid, epicycloid and Archimedes spiral. The velocities of the actuators were derived by deriving the position vector of the distances between the base and platform points. The solution logic using the given software is presented by a block diagram.
Rocznik
Tom
Strony
86--96
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Zilina Zilina, Slovakia
autor
- Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Zilina Zilina, Slovakia
autor
- Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Zilina Zilina, Slovakia
autor
- Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Zilina Zilina, Slovakia
Bibliografia
- 1. Dasgupta, B., & Mruthyunjaya, T.S. (2000). The Stewart platform manipulator: a review. Mechanism and Machine Theory, 35, 15-40.
- 2. Cai, Y., Zheng, S., Liu, W., & Qu, Z. (2021). Model analysis and modified control method of ship-mounted Stewart platforms for wave compensation. National Natural Science Foundation of China, 9, 4505-4517.
- 3. Jamwal, P.K., Xie, S.Q., Aw, K.C., & Tsoi, Z.H. (2009). Multi-criteria optimal design of cable driven ankle rehabilitation robot. Mobile Robots – State of the Art in Land, Sea, Air, and Collaborative Missions. [Online], 303-336
- 4. Smith+Nephew (2024). TAYLOR SPATIAL FRAME External Fixator. Orhopaedics. [Online]. https://www.smith-nephew.com/en-us/health-care-professionals/products/orthopaedics/taylor-sp atial-frame#overview.
- 5. NASA (2024). Webb Image Release – Webb Space Telescope GSFC/NASA. James Webb Space Telescope – NASA Science. [Online], https://science.nasa.gov/mission/webb/.
- 6. Schmidt-Kaler, T. (1992). The hexapod telescope: A new way to very large telescopes. Progress in Telescope and Instrumentation Technologies, 117, [Online], https://articles.adsabs.harvard.edu// full/1992ESOC...42..117S/0000123.000.html.
- 7. Ho, P.T.P., Altimirano, P., Birkinshaw, M. et all. (2008). The Yuan Tseh Lee AMiBA project. Modern Physics Letters A, 23, 1243-1251.
- 8. Khalid, A., & Mekid, S. (2010). Characteristic analysis of parallel platform simulators with different hardware configurations. Proceedings of International Bhurban Conference on Applied Sciences & Technology. Islamabad, 181-186.
- 9. Merlet, J.P., & Pierrot, P. (2007). Modeling, Performance Analysis and Control of Robot Manipulators. Modelling of Parallel Robots. ISTE Ltd., 81-139
- 10. Alvaro-Requena, E.F. (2020). Control of a Stewart-Gough platform for earthquake ground motion simulation. Mechanisms and Machine Science. Santiago de Queretaro, Mexico, 138-146.
- 11. Deabs, A., Gomaa, F.R., & Khader, K. (2021). Parallel robot. Journal of Engineering Science and Technology Review, 14, 10-27.
- 12. Ganesh, M., Karthikeyan, R., Venkitachalam, P., Guruguhan, G., Shrinithi, S., Kannan, S., & Dash, A.K. (2017). The influence of non-planar (spatial) links in the static characteristics behavior of planar parallel manipulator. International Journal of Robotics and Automation, 6, 151-167.
- 13. Zhu, M., Huang, C., Song, S., & Gong, D. (2022). Design of a Gough-Stewart platform based on visual servoing controller. Sensors, 22, 2523.
- 14. Li, S., Liu, S., Cui, J., Zhou, L., Lv, T., Zhao, D., Dong, L., & Jiao, H. (2024). Co-simulation of drag reduction of placoid scale oscillation driven by micro Stewart mechanism. Physics of Fluids, 36, 025175.
- 15. Zhu, H., He, S., Wang, X.M., Qin, C., Li, L., & Sun, XY. (2023). Design and testing of a simulator for micro-vibration testing of star sensor. Micromachines, 14, 1652-1652.
- 16. Sosa-Méndez, D., Lugo-González, E., Arias-Montiel, M., & García-García, R.A. (2017). ADAMSMATLAB co-simulation for kinematics, dynamics, and control of the Stewart-Gough platform. International Journal of Advanced Robotic Systems, 14, 1729881417719824.
- 17. Kuric, I., Tlach, V., Sága, M., Císar, M., & Zajačko, I. (2021). Industrial robot positioning performance measured on inclined and parallel planes by double ballbar. Applied Science, 11, 2-17.
- 18. Handrik, M., Dorčiak, F., Sága, M., Vaško, M., & Jakubovicová, L. (2019). Modification of the optimization model for simulation of large-diameter pipes bending. MATEC Web of Conferences, 254, 1-8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ccc22a9-9f5f-41a2-b6fd-a5346816fa79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.