Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The LQR (linear quadratic regulator) control problem subject to singular system constitutes a optimization problem in which one must be find an optimal control that satisfy the singular system and simultaneously to optimize the quadratic objective functional. In this paper we establish a sufficient condition to obtain the optimal control of discounted LQR optimization problem subject to disturbanced singular system where the disturbance is time varying. The considered problem is solved by transforming the discounted LQR control problem subject to disturbanced singular system into the normal LQR control problem. Some available results in literatures of the normal LQR control problem be used to find the sufficient conditions for the existence of the optimal control for discounted LQR control problem subject to disturbanced singular system. The final result of this paper is in the form a method to find the optimal control of discounted LQR optimization problem subject to disturbanced singular system. The result shows that the disturbance is vanish with the passage of time.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
147--156
Opis fizyczny
Bibliogr. 10 poz., wzory
Twórcy
autor
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus Unand Limau Manis, Padang, Indonesia, 25163
autor
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus Unand Limau Manis, Padang, Indonesia, 25163
autor
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus Unand Limau Manis, Padang, Indonesia, 25163
autor
- Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia
autor
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus Unand Limau Manis, Padang, Indonesia, 25163
Bibliografia
- [1] J. D. Cobb: Descriptor variable systems and optimal control state regulation. IEEE Trans. Aut. Cont., 28 (1983), 601–611.
- [2] G. R. Duan: Analysis and design of descriptor linear systems. Springer, 2010.
- [3] E. L. Yip and R. F. Sincovec: Solvability, controllability, and observability of continuous descriptor systems. IEEE Trans. Aut. Cont., 26(3) (1981), 702–707.
- [4] L. Chen: Singular LQR performance with the worst disturbance rejection for descriptor systems. J. Cont. Theor. Applic., 4 (2006), 277–280.
- [5] Zulakmal, Narwen, R. Budi, I. B. Ahmad, and Muhafzan: On the LQ optimization subject to descriptor system under disturbance. Asian Journal of Scientific Research, 11(4) (2018), 540–543.
- [6] P. Benigno and M. Woodford: Optimal taxation in an RBC model: a LQR approach. Journal of Economic Dynamics & Control, 30 (2006), 1445–1489.
- [7] J. Y. Ishihara and M. H. Terra: Impulse controllability and observability of rectangular descriptor systems. IEEE Trans. Aut. Cont., 46(6) (2001), 991–994.
- [8] Z. Yan: Geometric analysis of impulse controllability for descriptor system. Systems & Control Letters, 56 (2007), 1–6.
- [9] Muhafzan: Use of semidefinite programming for solving the LQR problem subject to descriptor systems. Int. J. Math. Computh. Sci., 20 (2010), 655–664.
- [10] C. Wu, X. Wang, K. L. Teo, and L. Jiang: Robust optimal control of continuous LQR system subject to disturbances. In: Intelligent Systems, Control and Automation: Science and Engineering, 2014, Springer, pp. 11–34.
Uwagi
EN
1. The work was supported by Universitas Andalas under Grant KRP1GB-PDU-Unand-2018 No. 04/UN.16.17/PP.RGB/LPPM/2018.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cc7fe92-6792-4a85-ac25-12d79d9f9120