PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Static carrying capacity of a single-row ball slewing bearing taking into account drive transmission conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Problems of computing a slewing bearings static carrying capacity have been presented in the paper. Particularly it was concentrated on determination of static limited load curves which include axial forces, radial forces and tilting moments. A calculation were performed on the base of single-row ball slewing bearing with four-point contact zone. In this work a procedure of determining the static limiting load curves on the basis of modeling by using the finite element method (FEM), analytic Eschmann's formulas and classical mechanics equations have been described. The structure of FEM bearings’ model was considered with gear conditions between a toothed bearing’s ring (rim) and a drive pinion in a power train of the excavator F250H symbol. Moreover, in the model flexibility of: the bearing rings, a contact zone ball-bearing, support structure and mutual interactions between bolts clamping the bearing rings and the support structures were taken into account. The static carrying capacity of the analyzed bearing, considered with the pinion and without was compared. Quantitative assessment of loads of the contact zones ball-raceway was achieved by using a statistic criterion.
Rocznik
Strony
15--25
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Faculty Of Mechanical Engineering And Computer Science, Institute Of Mechanics And Machine Design, Czestochowa University of Technology,Dabrowskiego Street 73, 42-201 Czestochowa, Poland
Bibliografia
  • 1. Aguirrebeitia J, Abasolo M, Aviles R, Bustos IF. General static load-carrying capacity for the design and selection of four contact point slewing bearings: finite element calculations and theoretical model validation. Finite Elem. Anal. Des. 2012; 55: 23-30. Available from: https://doi.org/10.1016/j.finel.2012.02.002
  • 2. Śpiewak S. Methodology for calculating the complete static carrying capacity of twin slewing bearing. Mechanism and Machine Theory 2016; 101: 181–194. Available from: https://doi.org/10.1016/j.mechmachtheory.2016.03.017
  • 3. Slewing Ring Turntable Bearings. Kaydon Corporation. Catalog 390, Muskegon. 2011.
  • 4. Rothe Erde slewing berings. RotheErde GmbH. Dortmund. 2007.
  • 5. INA Slewing rings. Catalogue 404, Schaeffler Technologies AG & Co. KG Herzogenaurach (Germany).
  • 6. Potočnik R, Göncz P, Glodež S. Static capacity of a large double row slewing ball bearing with predefined irregular geometry. Mechanism and Machine Theory. 2013;64:67-79. Available from: https://doi.org/10.1016/j.mechmachtheory.2013.01.010
  • 7. Śpiewak S. A peculiarity of determining a static carrying capacity for the one-row ball slewing bearing loaded the large radial force. Jour-nal of KONES. 2016; 3: 533 - 540.
  • 8. Li Y, Jiang D. Dynamic carrying capacity analysis of double-row four-point contact ball slewing bearing, Mathematical Problems in Engi; PT.19: 1-7. Available from:10.1155/2015/850908
  • 9. Smolnicki T, Derlukiewicz D, Stańco M. Evaluation of load distribu-tion in the superstructure rotation joint of single-bucket caterpillar ex-cavators. Automation in Construction. 2008;17:218–223.
  • 10. He P, Hong R, Wang H, Lu C. Fatigue life analysis of slewing bear-ings in wind turbines. International Journal of Fatigue. 2018; 111: 233-242. Available from: https://doi.org/10.1016/j.ijfatigue.2018.02.024
  • 11. Jaskot A, Śpiewak B, Śpiewak S. Influence of radial forces positively, negatively and perpendiculary directed on the static carrying capacity of the one row ball slewing bearing. Machine Dynamics Research. 2015; 3: 33 - 47.
  • 12. Glodež S, Potočnik R, Flašker J, Computational model for calculation of static capacity and lifetime of large slewing bearing's raceway, Mechanism and Machine Theory. 2012;47:16-30. Available from: https://doi.org/10.1016/j.mechmachtheory.2011.08.010
  • 13. Li Y, Wang R, Mao F. Calculation method for the static carrying curve of double-row different-diameter ball slewing bearings. Science Pro-gress. 2023; 106(2). Available from: 10.1177/00368504231180026
  • 14. Friederici V, Schumacher J, Clausen B, Influence of local differences in microstructure and hardness on the fatigue behaviour of a slewing bearing steel. Procedia Structural Integrity. 2021;31:8-14. Availa-ble from: https://doi.org/10.1016/j.prostr.2021.03.003
  • 15. He P, Liu R, Hong R, Wang H, Yang G, Lu C. Hardened raceway calculation analysis of a three-row roller slewing bearing. Internation-al Journal of Mechanical Sciences. 2018; 137: 133-144. Availa-ble from: https://doi.org/10.1016/j.ijmecsci.2018.01.021.
  • 16. Caesarendra W, Kosasih B, Tieu AK, Moodie CAS. Application of the largest Lyapunov exponent algorithm for feature extraction in low speed slewing bearing condition monitoring. Mechanical Systems and Signal Processing. 2015; January 50–51: 116-138. Availa-ble from: https://doi.org/10.1016/j.ymssp.2014.05.021
  • 17. Caesarendra W, Kosasih B, Tieu AK, Zhu H, Moodie CAS, Zhu Q. Acoustic emission-based condition monitoring methods: Review and application for low speed slew bearing. Mechanical Systems and Signal Processing. 2016; 72–73: 134-159. Available from: https://doi.org/10.1016/j.ymssp.2015.10.020
  • 18. Žvokelj M, Zupan S, Prebil I. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis, Journal of Sound and Vibration. 2016; 26: 394-423. Available from: Available from: https://doi.org/10.1016/j.jsv.2016.01.046
  • 19. Wang S, Chen J, Wang H, Zhang D. Degradation evaluation of slewing bearing using HMM and improved GRU. Measurement. 2019; 146: 385-395. Available from: https://doi.org/10.1016/j.measurement.2019.06.038
  • 20. Heras I, Aguirrebeitia J, Abasolo M. Friction torque in four contact point slewing bearings: Effect of manufacturing errors and ring stiff-ness. Mechanism and Machine Theory. 2017; 112: 145-154. Availa-ble from: https://doi.org/10.1016/j.mechmachtheory.2017.02.009
  • 21. Dindar A, Akkök M, Çalışkan M, Experimental Determination and Analytical Model of Friction Torque of a Double Row Roller Slewing Bearing, Journal of Tribology. 2017; 139(2): 021503, Available from: https://doi.org/10.1115/1.4033364
  • 22. Babu S, Manisekar K. Experimental Study of Heat Distribution in Polished Bearing Surfaces for Design and Development of Large Di-ameter Slewing Ring Bearing for FBR. Procedia Engineering. 2014; 86: 350-358. Available from: https://doi.org/10.1016/j.proeng.2014.11.048
  • 23. Amasorraina JI, Sagartzazu X, Damián J. Load distribution in a four contact-point slewing bearing. Mechanism and Machine Theory. 2003; 38: 479-496. Available from: https://doi.org/10.1016/S0094-114X(03)00003-X
  • 24. Göncz P, Potočnik R, Glodež S. Load capacity of a three-row roller slewing bearing raceway. Procedia Engineering. 2011; 10: 1196-1201. Available from: https://doi.org/10.1016/j.proeng.2011.04.199
  • 25. Aguirrebeitia J, Plaza J, Abasolo M, Vallejo J. Effect of the preload in the general static load-carrying capacity of four-contact-point slewing bearings for wind turbine generators: theoretical model and finite element calculations. Wind Energ. 2014; 17: 1605–1621. Available from: https://doi.org/10.1002/we.1656
  • 26. Kania L, Śpiewak S. English title: Determining the reactions of balls slewing bearing mounted in working struktures of the single-bucket excavator. Polish title: Wyznaczanie reakcji kulek łożyska wieńcowe-go osadzonego w strukturach roboczych koparki jednonaczyniowej. Zeszyty Naukowe Transport. Politechnika Śląska. 2014; 83: 127-136.
  • 27. ADINA.Theory and Modeling Guide. Vol. 1: ADINA Solids & Struc-tures. ADINA R&D Inc. Watertown. 2012.
  • 28. Bathe KJ, Finite Element Procedures. Prentice-Hall. Inc. Simon & Schuster/A Viacom Company Upper Saddle River. New Jersey. 1996.
  • 29. Hwang SC, Lee JH, Lee DH, Han SH, Lee KH. Contact stress analy-sis for a pair of mating gears. Mathematical and Computer Modelling. 2013; 57:40-49. Available from: https://doi.org/10.1016/j.mcm.2011.06.055
  • 30. Li S. Effect of addendum on contact strength, bending strengthand basic performance parameters of a pair of spur gears. Mechanism and Machine Theory. 2008; 43: 1557–1584.
  • 31. DIN/ISO – 898.
  • 32. Smolnicki T, Rusiński E. Superelement-based modeling of load distribution in large-size slewing bearings. Journal of Mechanical De-sign. 2007; 129: 459-463.
  • 33. Kania L., Śpiewak S. Współczynnik krotności łożysk wieńcowych podwójnych. Acta Mechanica et Automatica. 2009;3(1): 65-67.
  • 34. Brändlein J, Eschmann P, Hasbargen L, Weigand K, Die Wälzlagerpraxis. Vereinigte Fachverlag GmbH. 1998. Mainz.
  • 35. Smolnicki T,. Modelling, computing, and analyzing large-size rotary joints; In: Sokolski, M. (eds) Mining Machines and Earth-Moving Equipment. Springer. 2020. Cham. Available from: https://doi.org/10.1007/978-3-030-25478-0_3
  • 36. Sokolski P, Smolnicki T. A method for monitoring the technical condi-tion of large-scale bearing nodes in the bodies of machines operating for extended periods of time. Energies. 2021;14:6637. Availa-ble from: https://doi.org/10.3390/en14206637
  • 37. He P, Qian Q, Wang Y, Liu H. Guo E, Wang H. Influence of finite element mesh size on the carrying capacity analysis of single-row ball slewing bearing. Advances in Mechanical Engineering. 2021; 13: 1–12.
  • 38. Kania L, Krynke M, Mazanek E. A catalogue capacity of slewing bearings. Mechanism and Machine Theory. 2012; 58: 29–45. Availa-ble from: https://doi.org/10.1016/j.mechmachtheory.2012.07.012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cc325cd-3a49-429f-911f-2fe4b97e641e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.