PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rainwater treatment with bio-slow sand filtration for sustainable water supply

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The water crisis is a problem for almost all countries in the world. Rainwater has the potential to be developed as a water supply due to the large amount of polluted surface water. Bio-slow sand filtration (SSF) has long been proven to be able to improve the physical and biological quality of water. Modification of SSF in this study is bioactivated carbon from Moringa oleifera seeds, coconut shells, and lava rock as filter media. This study aims to examine the effectiveness of bio-SSF to treat rainwater as a water supply. Bio SSF uses transparent polypropylene with a diameter of 0.2 m and a total height of 1.5 m. The composition of the media used consisted of lava rock measuring 4.75–12.0 mm (10 cm), coconut shell charcoal measuring 1.18–4.75 mm (10 cm) and Moringa oleifera charcoal measuring 0.150–1.18 mm (80 cm). Samples were flown intermittently at a rate of 20 cm/hour at 20–25 °C. Parameters observed were pH, E. coli, TDS, Fe, Pb2+, Cd2+,, and ammonium. All parameters tested met the requirements for clean water as regulated by the Minister of Health of the Republic of Indonesia No. 32 of 2017.
Rocznik
Strony
190--200
Opis fizyczny
Bibliogr. 58 poz., rys. tab.,
Twórcy
  • Department of Civil Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Ketintang, Surabaya, 60231, Indonesia
  • Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Ketintang, Surabaya, 60231, Indonesia
Bibliografia
  • 1. Ghisi, E., Tavares, D. da F., & Rocha, V. L. (2009). Rainwater harvesting in petrol stations in Brasília: Potential for potable water savings and investment feasibility analysis. Resources, conservation and recycling, 54(2), 79–85.
  • 2. Tokarczyk-Dorociak, K., Walter, E., Kobierska, K., & Kołodyński, R. (2017). Rainwater management in the urban landscape of Wroclaw in terms of adaptation to climate changes. Journal of ecological engineering, 18(6), 171–184.
  • 3. United Nations Environment Programme (UNEP). (2008). Encyclopedia of global warming and climate change.
  • 4. Moreira Neto, R. F., Calijuri, M. L., Carvalho, I. de C., & Santiago, A. da F. (2012). Rainwater treatment in airports using slow sand filtration followed by chlorination: Efficiency and costs. Resources, conservation and recycling, 65, 124–129.
  • 5. Christian Amos, C., Rahman, A., & Mwangi Gathenya, J. (2016). Economic analysis and feasibility of rainwater harvesting systems in urban and periurban environments: A review of the global situation with a special focus on Australia and Kenya. Water, 8(4), 149.
  • 6. Zhang, X., Hu, M., Chen, G., & Xu, Y. (2012). Urban rainwater utilization and its role in mitigating urban waterlogging problems—A case study in Nanjing, China. Water resources management, 26(13), 3757–3766.
  • 7. Belmeziti, A., Coutard, O., & de Gouvello, B. (2014). How much drinking water can be saved by using rainwater harvesting on a large urban area? Application to Paris agglomeration. Water science and technology, 70(11), 1782–1788.
  • 8. Villar-Navascués, R., Pérez-Morales, A., & Gil Guirado, S. (2020). Assessment of rainwater harvesting potential from roof catchments through clustering analysis. Water, 12(9), 2623.
  • 9. Ghaffarian Hoseini, A., Tookey, J., Ghaffarian Hoseini, A., Yusoff, S. M., & Hassan, N. B. (2015). State of the art of rainwater harvesting systems towards promoting green built environments: A review. Desalination and water treatment, 1–10.
  • 10. Zhu, K., Zhang, L., Hart, W., Liu, M., & Chen, H. (2004). Quality issues in harvested rainwater in arid and semi-arid loess plateau of Northern China. Journal of arid environments, 57(4), 487–505.
  • 11. Pineda, E., Guaya, D., Rivera, G., García-Ruiz, M. J., & Osorio, F. (2021). Rainwater treatment: an approach for drinking water provision to indigenous people in Ecuadorian Amazon. International journal of environmental science and technology, 19(9), 8769–8782.
  • 12. Zdeb, M., Zamorska, J., Papciak, D., & Słyś, D. (2020). The quality of rainwater collected from roofs and the possibility of its economic use. Resources, 9(2), 12.
  • 13. Hasan, M., Alhazmi, W. H., Zakri, W., & Khan, A. U. (2022). Design of solar photovoltaic based portable water filter. International journal of mathematical, engineering and management sciences, 7(4), 491–502.
  • 14. Lakshminarayana, S. V., Sathian, K. K., & Prakash, K. V. A. (2017). Performance evaluation of first flush with micromesh filter system under actual rainfall condition. International journal of current microbiology and applied sciences, 6(3), 292–300.
  • 15. Liu, L., Fu, Y., Wei, Q., Liu, Q., Wu, L., Wu, J., & Huo, W. (2019). Applying bio-slow sand filtration for water treatment. Polish journal of environmental studies, 28(4), 2243–2251.
  • 16. Fitriani, N., Ni’matuzahroh, N., O’Marga, T., Radin Mohamed, R., Wahyudianto, F., Imron, M., Isnadina, D. R., & Soedjono, E. (2022). Optimization of slow sand filtration for the raw municipal wastewater treatment by using the blood cockle (Anadara granosa) shell as an alternative filter media through the response surface methodology. Journal of ecological engineering, 23(6), 100–111.
  • 17. Verma, S., Daverey, A., & Sharma, A. (2017). Slow sand filtration for water and wastewater treatment – A review. Environmental technology reviews, 6(1), 47–58.
  • 18. Ahammed, M. M., & Davra, K. (2011). Performance evaluation of biosand filter modified with iron ox-ide-coated sand for household treatment of drinking water. Desalination, 276(1–3), 287–293.
  • 19. Cobb, A., Warms, M., Maurer, E. P., & Chiesa, S. (2012). Low-tech coconut shell activated charcoal production. International Journal for Service Learning in Engineering, Humanitarian engineering and social entrepreneurship, 7(1), 93–104.
  • 20. Khayan, K., Heru Husodo, A., Astuti, I., Sudarmadji, S., & Sugandawaty Djohan, T. (2019). Rainwater as a source of drinking water: Health impacts and rainwater treatment. Journal of environmental and public health, 1–10.
  • 21. Khaerudin, D., & Rahmatullah, A. (2021). Carbon technology active coconut shell on air filter media for domestic wastewater. Indonesian journal of engagement, community services, empowerment and development, 1(1), 42–49.
  • 22. Xiong, B., Piechowicz, B., Wang, Z., Marinaro, R., Clement, E., Carlin, T., Uliana, A., Kumar, M., & Velegol, S. B. (2017). Moringa oleifera f-sand filters for sustainable water purification. Environmental science &: Technology letters, 5(1), 38–42.
  • 23. Varkey, A. J. (2020). Purification of river water using Moringa oleifera seed and copper for point-of-use household application. Scientific African, 8, e00364.
  • 24. Delelegn, A., Sahile, S., & Husen, A. (2018). Water purification and antibacterial efficacy ofMoringa oleifera Lam. Agriculture &: Food security, 7(1).
  • 25. Khorsand, M., Dobaradaran, S., & Kouhgardi, E. (2017). Cadmium removal from aqueous solutions using Moringa oleifera seed pod as a biosorbent. Desalination and water treatment, 71, 327–333.
  • 26. Santos, T. M., de Jesus, F. A., da Silva, G. F., & Pontes, L. A. M. (2020). Synthesis of activated carbon from Moringa oleifera for removal of oils and greases from the produced water. Environmental nanotechnology, monitoring & Management, 14, 100357.
  • 27. Katukiza, A. Y., Ronteltap, M., Niwagaba, C. B., Kansiime, F., & Lens, P. N. L. (2014). Grey water treatment in urban slums by a filtration system: Optimisation of the filtration medium. Journal of environmental management, 146, 131–141.
  • 28. Valappil, N. K. M., Viswanathan, P. M., & Hamza, V. (2020). Chemical characteristics of rainwater in the tropical rainforest region in Northwestern Borneo. Environmental science and pollution research, 27(29), 36994–37010.
  • 29. Campos, L. C., Su, M. F. J., Graham, N. J. D., & Smith, S. R. (2002). Biomass development in slow sand filters. Water research, 36(18), 4543–4551.
  • 30. Tyagi, V. K., Khan, A. A., Kazmi, A. A., Mehrotra, I., & Chopra, A. K. (2009). Slow sand filtration of UASB reactor effluent: A promising post treatment technique. Desalination, 249(2), 571–576.
  • 31. Elliott, M. A., Stauber, C. E., Koksal, F., DiGiano, F. A., & Sobsey, M. D. (2008). Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water research, 42(10–11), 2662–2670.
  • 32. Yusuf, K. O., Adio-Yusuf, S. I., & Obalowu, R. O. (2019). Development of a simplified slow sand filter for water purification. Journal of applied sciences and environmental management, 23(3), 389.
  • 33. Standard Methods of Water Analysis. 1937. Journal - American Water Works Association, 29(1), 128–128. Portico.
  • 34. Castro-Jiménez, C. C., Grueso-Domínguez, M. C., Correa-Ochoa, M. A., Saldarriaga-Molina, J. C., & García, E. F. (2022). A coagulation process combined with a multi-stage filtration system for drinking water treatment: An alternative for small communities. Water, 14(20), 3256.
  • 35. Azis, K., Mavriou, Z., Karpouzas, D. G., Ntougias, S., & Melidis, P. (2021). Evaluation of sand filtration and activated carbon adsorption for the post-treatment of a secondary biologically-treated fungicide-containing wastewater from fruit-packing industries. Processes, 9(7), 1223.
  • 36. Moravec, C. M., Bradford, K. J., & Laca, E. A. (2008). Water relations of drumstick tree seed Moringa oleifera: imbibition, desiccation, and sorption isotherms. Seed science and technology, 36(2), 311–324.
  • 37. Hendrawati, Yuliastri, I. R., Nurhasni, Rohaeti, E., Effendi, H., & Darusman, L. K. (2016). The use of Moringa oleifera seed powder as coagulant to improve the quality of wastewater and ground water. IOP conference reries: Earth and environmental science, 31, 012033.
  • 38. Geleta, W. S., Alemayehu, E., & Lennartz, B. (2021). Volcanic rock materials for defluoridation of water in fixed-bed column systems. Molecules, 26(4), 977.
  • 39. Idris, M. A., Jami, M. S., & Hammed, A. M. (2017). Inactivation disinfection property of Moringa oleifera seed extract: optimization and kinetic studies. IOP conference reries: Earth and environmental science, 67, 012031.
  • 40. Udayasri, A., Ramanaiah, M., & B.B.V. Sailaja. (2012). Evaluation of physico - chemical characteristics of water treated with Moringa oleifera seed as a coagulant for purification of river water. International journal of scientific research, 3(5), 288–291.
  • 41. Seeger, E. M., Braeckevelt, M., Reiche, N., Müller, J. A., & Kästner, M. (2016). Removal of pathogen indicators from secondary effluent using slow sand filtration: Optimization approaches. Ecological engineering, 95, 635–644.
  • 42. Adin, A. (2003). Slow granular filtration for water reuse. Water supply, 3(4), 123–130.
  • 43. Elliott, M. A., DiGiano, F. A., & Sobsey, M. D. (2011). Virus attenuation by microbial mechanisms during the idle time of a household slow sand filter. Water research, 45(14), 4092–4102.
  • 44. Yogafanny, E., Fuchs, S., & Obst, U. 2014. Study of slow sand filtration in removing total coliforms and E.Coli. Jurnal sains &Teknologi lingkungan, 6(2), 107–116.
  • 45. Corral, A. F., Yenal, U., Strickle, R., Yan, D., Holler, E., Hill, C., Ela, W. P., & Arnold, R. G. (2014). Comparison of slow sand filtration and microfiltration as pretreatments for inland desalination via reverse osmosis. Desalination, 334(1), 1–9.
  • 46. Onyeka Nkwonta. (2011). Magnesium and iron removal in mine water using roughing filters. International Journal of the physical sciences, 6(28).
  • 47. Cha, Z., Lin, C.-F., Cheng, C.-J., & Andy Hong, P. K. (2010). Removal of oil and oil sheen from produced water by pressure-assisted ozonation and sand filtration. Chemosphere, 78(5), 583–590.
  • 48. Hsu, J. C., Lin, C. J., Liao, C. H., & Chen, S. T. (2008). Removal of As (V) and As (III) by reclaimed iron-oxide coated sands. Journal of hazardous materials, 153(1–2), 817–826.
  • 49. Young-Rojanschi, C., & Madramootoo, C. 2014. Intermittent versus continuous operation of biosand filters. Water research, 49, 1–10.
  • 50. Srivastava, N. K., & Majumder, C. B. (2008). Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. Journal of hazardous materials, 151(1), 1–8.
  • 51. Johannsen, L. L., Cederkvist, K., Holm, P. E., & Ingvertsen, S. T. (2016). Aluminum oxide-coated sand for improved treatment of urban stormwater. Journal of environmental quality, 45(2), 720–727. Portico.
  • 52. Fujita, A., Kishi, M., Sekine, M., & Toda, T. (2022). Anaerobic digestion effluent purification using activated sludge process, slow sand filtration, and activated carbon filtration. Journal of the Japan society of material cycles and waste management, 33(0), 1–10.
  • 53. Khatri, N., Tyagi, S., & Rawtani, D. (2017). Recent strategies for the removal of iron from water: A review. Journal of water process engineering, 19, 291–304.
  • 54. Zhang, C., Sui, J., Li, J., Tang, Y., & Cai, W. (2012). Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes. Chemical engineering journal, 210, 45–52.
  • 55. King-Nyamador, G., Amoatey, P. K., Amoah, S., & Adu-Ampong, B. (2020). Optimal bed thickness and effective size for improving wastewater quality for irrigation. International journal of energy and environmental engineering, 12(2), 175–190.
  • 56. Zaid, A. Q., Ghazali, S. B., Mutamim, N. S. A., & Olalere, O. A. (2019). Experimental optimization of Moringa oleifera seed powder as bio-coagulants in water treatment process. SN Applied sciences, 1(5).
  • 57. Keresztesi, A., Sandor, P., Ghita, G., Dumitru, F. D., Moncea, M. A., Ozunu, A., & Szep, R. (2018). Ammonium neutralization effect on rainwater chemistry in the basins of the Eastern Carpathians - Romania. Revista de chimie, 69(1), 57–63.
  • 58. Li, J., Zhou, Q., & Campos, L. C. (2018). The application of GAC sandwich slow sand filtration to remove pharmaceutical and personal care products. Science of the total environment, 635, 1182–1190
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cc1c708-c860-4f6e-9ddf-ec71a59fbcf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.