PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PD terminal sliding mode control using fuzzy genetic algorithm for mobile robot in presence of disturbances

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a new approach in the field of trajectory tracking for nonholonomic mobile robot in presence of disturbances. The proposed control design is constructed by a kinematic controller, based on PD sliding surface using fuzzy sliding mode for the angular and linear velocities disturbances, in order to tend asymptotically the robot posture error to zero. Thereafter a dynamic controller is presented using as a sliding surface design, a fast terminal function (FTF) whose parameters are generated by a genetic algorithm in order to converge the velocity errors to zero in finite time and guarantee the asymptotic stability of the system using a Lyapunov candidate. The elaborated simulation works in the case of different trajectories confirm the robustness of the proposed approach.
Twórcy
autor
  • Advanced Electronic laboratory, University of Batna 2, Batna, Algeria
autor
  • Advanced Electronic laboratory, University of Batna 2, Batna, Algeria
autor
  • Advanced Electronic laboratory, University of Batna 2, Batna, Algeria
Bibliografia
  • [1] Campion G., Bastin G., Andrea-Novel B.D., “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots”. IEEE Trans Robotics Autom, 1996, vol. 12, issue 1, pp. 47–62.
  • [2] Pedro J.P., “A. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modelling uncertainty”, IEEE Trans Autom Control, 2007,vol. 52, issue 8, pp. 1362––1379. DOI: 10.1109/TAC.2007.902731.
  • [3] Samson C., “Control of chained systems application to path following and time-varying pointstabilization of mobile robots”, IEEE Trans. Autom. Control, 1995, vol. 40, issue 1, pp. 64–77.ISSN 1558-2523. DOI: 10.1109/9.362899.
  • [4] Wu J., Xu G., Yin Z., “Robust Adaptive Control for a Nonholonomic Mobile Robot with Unknown Parameters”, Jr Control Theory Appl, 2009, vol. 7, issue 2, pp. 212–218. ISSN 1993-0623. DOI: 10.1007/s11768-009-7130-6.
  • [5] Kanayama Y., Kimura, Y. Miyazaki, F., Noguchi, “T. A Stable Tracking Control Method for an Autonomous Mobile Robot”, IEEE Conf. Robotics and Automation, Cincinnati, 1990, pp. 384––389. ISBN 0-8186-9061-5.DOI: 10.1109/ROBOT.1990.126006.
  • [6] N.M. Dung,V.H. Duy, N.T. Phuong, S.B. Kim et al., “Two Wheeled Welding Mobile Robot for Tracking a Smooth Curved Welding Path Using Adaptive Sliding-Mode Control Technique”, Int. Journal of Control, Automation and Systems, 2007, vol. 5, issue 3, pp. 283–294.
  • [7] Keighobadi J., Mohamadi Y., “Fuzzy Sliding Mode Control of a Non-Holonomic Wheeled Mobile Robot”. In: Proc. International Multiconferenc of Engineers and Computer Scientists, 2011, City: Hong Kong. ISBN978-1-4244-7429-5. DOI: 10.1109/SAMI.2011.5738888.
  • [8] Yang J., Kim J., “Sliding Mode Control for Trajectory Tracking of Nonholonomic Wheeled Mobile Robots”, IEEE Trans. Robotics and Automation, 1999, vol. 15, pp. 578–587. ISSN 1042-296X.DOI: 10.1109/70.768190.
  • [9] M. Namazov, O. Basturk., “DC motor position control using fuzzy proportional-derivative controllers with different defuzzification methods”, Turkish Journal of Fuzzy Systems, 2010, vol. 1, issue 1, pp. 36–54. ISSN: 1309–1190.
  • [10] M.H. Zadeh, A. Yazdian, M. Mohamadian, “Robust Position Control in DC Motor by Fuzzy Sliding Mode Control”, International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2006, pp. 1413–1418.
  • [11] V.I. Utkin, J. Guldner, J. Shi, Sliding mode control in electromechanical Systems. CRC Press, 1999. ISBN 9781420065602.
  • [12] E.S. Elyoussef, N.A. Martins, E.R. de Pieri, U.F. Moreno, “PD-super-twisting second order sliding mode tracking control for a nonholonomic wheeled mobile robot”. In: 19th IFAC World Congress, 2014, pp. 3827–3832. DOI: 10.3182/20140824-6-ZA 1003.02210.
  • [13] Y. Ma, G. Zheng, W. Perruquetti, Z. Qiu, “Control of nonholonomic wheeled mobile robots via i-PID controller”. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2013, Tokyo, Japan, pp. 4413–4418. ISBN 978-1-4673-6358-7. DOI: 10.1109/IROS.2013.6696990.
  • [14] M. Guerra, D. Efimov, G. Zheng, W. Perruquetti, “Finite-time obstacle avoidance for unicycle-like robot subject to additive input disturbances”. Autonomous Robots, 2017, vol. 40, issue 1, pp. 19–30. ISSN 1573-7527. DOI: 10.1007/s10514-015-9526-0.
  • [15] Y. Wang, Z. Miao, H. Zhong, Q. Pan, “Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach”, IEEE Trans. on Control Systems Technology, 2015, vol. 23, issue 4, pp. 1440–1450. DOI: 10.1109/TCST.2014.2375812.
  • [16] X. Liu, H. Zhao, H. Liu, “Adaptive Fuzzy Nonsingular Terminal Sliding Mode Control for a Class of Uncertain Nonlinear Systems”, Journal of Information & Computational Science, 2013, vol. 10, issue 4, pp. 1229–1236.
  • [17] Z. Man, A.P. Paplinski, H.R. Wu, “A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators”, IEEE Trans. Autom. Control, 1994, vol. 39, pp. 2464–2469. DOI: 10.1109/9.362847.
  • [18] X.H. Yu, Z. Man, “Model reference adaptive control systems with terminal sliding modes”, Int. J. Control, 1996, vol. 64, issue 6, pp. 1165–1176, DOI: 10.1080/00207179608921680
  • [19] V. Nekoukar, A. Erfanian. “Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems”, Fuzzy Sets and Systems, 2011, vol. 179, issue 1, pp. 34–49. DOI: 10.1016/j.fss.2011.05.009.
  • [20] P.R. Ouyangn, J. Acob, V. Pano, “PD with sliding mode control for trajectory tracking of robotic system”, Robotics and Computer Integrated Manufacturing, 2014, vol. 30, issue 2, pp. 189–200. DOI: 10.1016/j.rcim.2013.09.009.
  • [21] C. Su, G. Lii, H. Hwung, “Position control employing fuzzy-sliding mode and genetic algorithms with a modified evolutionary direction operator”, International Journal of Cybernetics & Systems, 2010, vol. 30, pp. 873–891. DOI:10.1080/019697200750038986.
  • [22] B.S.K.K. Ibrahim, R. Ngadengon, M.N. Ahmad, “Genetic algorithm optimized integral sliding mode control of a direct drive robot arm”. In: Proceedings of the International Conference on Control, Automation and Information Sciences (ICCAIS’12), 2012, Ho Chi Minh, Vietnam, pp. 328–333. ISBN 978-1-4673-0813-7. DOI:10.1109/ICCAIS.2012.6466612.
  • [23] S.E. Li, K. Deng, Recent Advances in Non-singular Terminal Sliding Mode Control Method, Springer-Verlag Berlin Heidelberg, 2014. ISBN 978-3-642-36385-6.
  • [24] N. Martins, E.S. Elyoussef, W. Bertol, E.R. de Pieri, U.F. Moreno, B. Castelan, “Trajectory Tracking of a Nonholonomic Mobile Robot with Kinematic Uncertainties and Disturbances: A Variable Structure Controller”, Journal of the Brazilian Neural Network Society, 2010, vol. 8, pp. 23–40.
  • [25] W.E. Dixon, D.M. Dawson, E. Zergeroglu, “Tracking and Regulation Control of a Mobile Robot System with Kinematic Disturbances: A Variable, Structure-Like Approach”, Journal of Dynamic Systems, Measurement and Control, 2000, vol. 122, pp. 616–623. DOI: 10.1115/1.1316795.
  • [26] L. Castillo, T. Aguilar, S. C’Ardenas, “Fuzzy logic tracking control for unicycle mobile robots”, Engeneering Letters, 2006, vol. 13, issue 3, pp. 73–77.
  • [27] L.T.-C. Song, K.-T. Lee, C.-H. Teng, “Tracking control of unicycle-modelled mobile robot using a saturation feedback controller”, IEEE TRANC. contr. syst. technol, 2001, vol. 9, issue 2, pp. 305–318. ISSN1063-6536. DOI:10.1109/87.911382.
  • [28] D.R. Farzdaq, R. Yasien, Q. Khadim, “Chattering Attenuation of Sliding Mode Controller Using Genetic Algorithm and Fuzzy Logic Techniques”. Eng. & Tech. Journal, 2009, vol. 27, issue 14, pp. 2595-2610. ISSN 16816900 24120758.
  • [29] S.S. Rao, Optimization Theory and Practice, 4th Edition, John Wiley & Sons Inc, 2009. ISBN 978-0-470-18352-6.
  • [30] M. Rahul, S. Narinder, S. Yaduvir, “Genetic Algorithms: Concepts, Design for Optimization of Process Controller”, Computer and information science, 2011, vol. 4, issue 2, pp. 39–54. DOI: 10.5539/cis.v4n2p39
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cc105ab-f1eb-49b1-9cf6-e5ceaa9440bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.