PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving interior design: topology optimization and large-scale 3D printing plastic

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pervasive use of plastics, despite their economic benefits in recycling and reuse due to their low cost and abundance, has contributed significantly to global environmental issues, including pollution and global warming. Notably, polymer production continues to rise, paralleling increasing environmental impacts. This paper shifts focus from these broader environmental concerns to explore how topology optimization and advanced 3D printing technologies are transforming interior design. Specifically, it examines the integration of topology optimization a technique traditionally used in engineering to distribute materials efficiently within a design space to enhance both the sustainability and creativity of large-scale 3D printing applications in interior design. By optimizing material usage and minimizing waste, these technologies not only address some environmental concerns associated with plastics but also revolutionize how designers conceive and implement interior spaces. The paper highlights case studies where these integrated technologies have enabled unprecedented levels of creativity and efficiency, redefining the aesthetics and functionality of interior environments.
Rocznik
Strony
art. no. e2024015
Opis fizyczny
Bibliogr. 23 poz., il.
Twórcy
  • Faculty of Architecture of Czech Technical University in Prague, Prague, Czech Republic
  • Faculty of Architecture of Czech Technical University in Prague, Prague, Czech Republic
Bibliografia
  • 1. Adam, C., & Furtmüller, T. (2008). Response of nonstructural components in ductile load-bearing structures subjected to ordinary ground motions. Retrieved from https://www.iitk.ac.in/nicee/wcee/article/14_05-01-0327.pdf (access: 8.04.2024).
  • 2. Al Jassmi, H., Al Najjar, F., & Mourad, A.-H. I. (2018). Large-Scale 3D Printing: The Way Forward. IOP Conference Series: Materials Science and Engineering, 324, 12088. https://doi.org/10.1088/1757-899X/324/1/012088
  • 3. Bialkowski, S. (2016). Structural Optimisation Methods as a New Toolset for Architects. In Proceedings of the 34th International Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe) [Volume 2]. eCAADe. https://doi.org/10.52842/conf.ecaade.2016.2.255
  • 4. Formlabs. (2024). Guide to Selective Laser Sintering (SLS) 3D Printing. May 11.000Z.
  • 5. Guest, J.K., & Moen, C.D. (2010). Reinforced Concrete Design with Topology Optimization. In M. Hoit, K. Casey, & S. Senapathi (Eds.), 2010 Structures Congress: 19th Analysis and Computation Specialty Conference (pp. 445–454). American Society of Civil Engineers. https://doi.org/10.1061/41131(370)39
  • 6. Iqbal, H. (2021). Effects of topology optimisation and infill density on mechanical properties of extrusion-based additive manufacturing samples. Italy; Politecnico di Milano. https://www.politesi.polimi.it/handle/10589/174280
  • 7. Kim, Y., Yoon, C., Ham, S., Park, J., Kim, S., Kwon, O., & Tsai, P.-J. Emissions of Nanoparticles and Gaseous Material from 3D Printer Operation. Advance online publication. https://doi.org/10.1021/acs.est.5b02805
  • 8. Mikula, K., Skrzypczak, D., Izydorczyk, G., Warchoł, J., Moustakas, K., Chojnacka, K., & Witek-Krowiak, A. (2021). 3d printing filament as a second life of waste plastics—A review. Environmental Science and Pollution Research, 28(10), 12321–12333. https://doi.org/10.1007/s11356-020-10657-8
  • 9. Nikam, M., Pawar, P., Patil, A., Patil, A., Mokal, K., & Jadhav, S. (2023). Sustainable fabrication of 3D printing filament from recycled PET plastic. Materials Today: Proceedings. Advance online publication. https://doi.org/10.1016/j.matpr.2023.08.205
  • 10. Protolabs Network. (2024a, May 8.000Z). What is FDM (fused deposition modeling) 3D printing? | Protolabs Network. Retrieved from https://www.hubs.com/knowledge-base/what-is-fdm-3d-printing/#what-are-the-characteristics-of-fdm-3d-printing (access: 8.05.2024).
  • 11. Protolabs Network. (2024b, May 8.000Z). What is SLA printing? The original resin 3D print method | Protolabs Network. Retrieved from https://www.hubs.com/knowledge-base/what-is-sla-3d-printing/#what-materials-are-used-for-sla-printing (access: 8.05.2024).
  • 12. Qamar Tanveer, M., Mishra, G., Mishra, S., & Sharma, R. (2022). Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts-a current review. Materials Today: Proceedings, 62(1), 100–108. https://doi.org/10.1016/j.matpr.2022.02.310
  • 13. Shanmugasundar, G., Dharanidharan, M., Vishwa, D., & Sanjeev Kumar, A.P. (2021). Design, analysis and topology optimization of connecting rod. Materials Today: Proceedings, 46(VII), 3430–3438. https://doi.org/10.1016/j.matpr.2020.11.778
  • 14. Shobeiri, V. (2016). Topology optimization using bi-directional evolutionary structural optimization based on the element-free Galerkin method. Engineering Optimization, 48(3), 380–396. https://doi.org/10.1080/0305215X.2015.1012076
  • 15. Skoratko, A., & Katzer J. (2021). Harnessing 3D Printing of Plastics in Construction-Opportunities and Limitations. Materials (Basel, Switzerland), 14(16). https://doi.org/10.3390/ma14164547
  • 16. Tay, Y.W.D., Panda, B., Paul, S.C., Noor Mohamed, N.A., Tan, M.J., & Leong, K.F. (2017). 3D printing trends in building and construction industry: a review. Virtual and Physical Prototyping, 12(3), 261–276. https://doi.org/10.1080/17452759.2017.1326724
  • 17. Woern, A.L., Byard, D.J., Oakley, R.B., Fiedler, M.J., Snabes, S.L., & Pearce, J.M. (2018). Fused Particle Fabrication 3-D Printing: Recycled Materials’ Optimization and Mechanical Properties. Materials (Basel, Switzerland),11(8). https://doi.org/10.3390/ma11081413
  • 18. Xiangfeng, S., Jie Yang, Xie, Y.M., Xiaodong, H., & Zhihao, Z. (2011). Topology Optimization of Composite Structure Using Bi-Directional Evolutionary Structural Optimization Method. 1877-7058, 14, 2980–2985. https://doi.org/10.1016/j.proeng.2011.07.375
  • 19. Xie, Y.M. (2022). Generalized topology optimization for architectural design. Architectural Intelligence, 1(1), 268. https://doi.org/10.1007/s44223-022-00003-y
  • 20. Xie, Y.M., Kai, Y., Yunzhen, H., Zi-Long, Z., & Kun, C. (2019). How to obtain diverse and efficient structural designs through topology optimization. International Association for Shell and Spatial Structures (IASS). Retrieved from https://www.ingentaconnect.com/content/iass/piass/2019/00002019/00000017/art00008 (access: 15.04.2024).
  • 21. Yan Li, Xiao, D.H., Xie, Y. M., & Shi, W. Z. (2013). Bi-Directional Evolutionary Structural Optimization for Design of Compliant Mechanisms. Key Engineering Materials, 535–536, 373–376. https://doi.org/10.4028/www.scientific.net/KEM.535-536.373
  • 22. Yang, K., Zhao, Z.-L., He, Y., Zhou, S., Zhou, Q., Huang, W., & Xie, Y. M. (2019). Simple and effective strategies for achieving diverse and competitive structural designs. Extreme Mechanics Letters, 30, 100481. https://doi.org/10.1016/j.eml.2019.100481
  • 23. Zontek, T.L., Ogle, B.R., Jankovic, J.T., & Hollenbeck, S.M. An exposure assessment of desktop 3D printing. Journal of Chemical Health & Safety. Advance online publication. https://doi.org/10.1016/j.jchas.2016.05.008
Uwagi
1. Section "Architecture and Urban Planning"
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cbfda27-fc71-4fae-9dde-9982975d95d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.