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Abstract: This paper presents an iterative method for the un-
biased identification of linear Multiple-Input Multiple-Output (MIMO)
discrete two-dimensional (2D) systems. The system discussed here
has Auto-Regressive Moving-Average model with exogenous inputs
(ARMAX model). The proposed algorithm functions on the basis of
the traditional Iterative Generalized Least Squares (IGLS) method.
In summary, this paper proposes a two-dimensional Multiple-Input
Multiple-Output Iterative Generalized Least Squares (2DMIGLS)
algorithm to estimate the unknown parameters of the ARMAXmodel.
Finally, simulation results show the efficiency and accuracy of the
presented algorithm in estimating the unknown parameters of the
model in the presence of colored noise.

Keywords: ARMAXmodel, discrete 2D systems, iterative iden-
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1. Introduction

Natural phenomena and physical processes such as electromagnetic waves, sound
diffusion, heat transfer, moisture spreading, power transmission lines, chemical
processes, biological systems, image processing, wireless networks and so on
mostly have mathematical models with functions of more than one independent
variable, such as time and space, see, for instance, Marszalek (1984), Fornasini
and Marchesini (1978), Bracewell (1995), Kaczorek (1985), Wellstead, Zarrop
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and Duncan (1999), Young, Garnier and Gilson (2008), Zeinali and Shafiee
(2016), Ding, Du and Li (2015), Amiri Mehra et al. (2020), Sadeghi, Shafiee and
Shafieirad (2013), Shafieirad and Shafiee (2008), Abbasi et al. (2020). In fact,
the phenomena in question are both distributed in space and depend on time,
which means that the input signals (main input and noise) and output signals are
functions of time and space. Whenever the signals depend on two independent
variables, such as space (in two dimensions) or space-time, the system is called
a two-dimensional (2D) system. Actually, the majority of physical systems
have more than one input and output, this situation being referred to through
the notion of Multiple-Input Multiple-Output systems, or the frequently used
abbreviation MIMO.

There are two basic procedures of modelling the natural phenomena and
physical processes. The first one is analytical modeling or white-box modeling,
within which the model is constructed by using physical laws. With this ap-
proach, the model becomes often too complicated, and therefore the respective
system becomes too difficult to analyze and control. The second is experimen-
tal modeling or system identification, which includes the black-box and grey-
box modeling. The experimental modeling is performed using the input-output
sampled data. If the model structure is known a priori and the identification
problem is limited to estimating the values of the unknown coefficients of the
model, then the respective identification task is called parameter estimation.∗

There are many developments, both scientific and pragmatic, in the field
of parameter estimation of 2D systems. Thus, in particular, in Ding, Du and
Li (2015) and Chen and Kao (1979), the parameters of 2D Auto-Regressive
with Exogenous input (ARX) and Finite Impulse Response (FIR) models are
estimated based on the Least Square (LS) method. In Ali, Chughtai and
Werner (2010), Shafieirad, Shafiee and Abedi (2013), and Shafieirad, Shafiee
and Abedi (2014a), the one-dimensional Instrumental Variable (IV) techniques
are extended for identification of 2D systems. The parameter estimation of
2D systems with the state-space model is presented in Fraanje and Verhaegen
(2005), Wang et al. (2017), and in Zhao et al. (2017). Also, the recursive iden-
tification of 2D continuous systems with Box-Jenkins (BJ) model is presented in
Shafieirad, Shafiee and Abedi (2014b). However, to the best of our knowledge,
parameter estimation of Multiple-Input Multiple-Output discrete 2D ARMAX
(MIMO 2D ARMAX) model has not been fully investigated. Due to MIMO
structure and existing two independent variables in MIMO 2D ARMAX, pa-
rameter estimation appears to be challenging and has motivated us to carry out
the present study.

This paper is organized as follows: In Section 2, the MIMO 2D ARMAX
model is described. Then, in Section 3, the one-dimensional iterative generalized

∗Actually, these two basic approaches are not necessarily totally ”disjoint”, both because
parts of the model can be constructed with the use of any of the two approaches, and because
in the analytic approach it is almost always necessary to estimate some of the parameters,
which remain “outside” of the theory used to construct the model (eds.).
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least square method is extended for parameter estimation of MIMO 2D ARMAX
model. Finally, the simulation results are presented to show the accuracy and
efficiency of the proposed algorithm.

2. Model description

In this section, the MIMO 2D ARMAX model and the regression equation of
the system that is shown in Fig. 1, are presented.

v(k)

u(k) y(k)
B(k)

C(k)

1

A(q)

Figure 1. The ARMAX model block diagram

2.1. System model

A linear MIMO 2D discrete system with ARMAX model is expressed in the
form of a partial difference equation (PDE) as follows:

n1
∑

i=0

n2
∑

j=0

Ai,jy (k − i, p− j) =

m1
∑

i=0

m2
∑

j=0

Bi,ju (k − i, p− j) +

q1
∑

i=0

q2
∑

j=0

Ci,jv (k − i, p− j) (1)

where y = [y1, y2, ..., yn]
T ∈ Rn×1, u = [u1, u2, ..., um]T ∈ Rm×1, and v =

[v1, v2, ..., vn]
T ∈ Rn×1 are output, input and white noise vectors, respectively.

The unknown coefficient matrices (i.e. ARMAX model parameters) in (1) are
defined as follows:

Ai,j = [a1i,j , a
2
i,j , ..., a

n
i,j ]

T ∈ Rn×n; i = 0, 1, ..., n1, j = 0, 1, ..., n2

Bi,j = [b1i,j , b
2
i,j , ..., b

n
i,j ]

T ∈ Rn×m; i = 0, 1, ...,m1, j = 0, 1, ...,m2

Ci,j = [c1i,j , c
2
i,j , ..., c

n
i,j ]

T ∈ Rn×n; i = 0, 1, ..., q1, j = 0, 1, ..., q2

where alTi,j , b
lT

i,j , and cl
T

i,j are the l-th rows of matrices Ai,j , Bi,j , and Ci,j , re-
spectively, in which A00 = I and C00 = I. In here, n1 and n2 are the highest
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difference orders of output y in PDE (1) with respect to the variables k and
p, respectively. Also m1 and m2 are the highest difference orders of input u in
PDE (1) with respect to the variables k and p, respectively. The pair (n1, n2)
is called the order of noise-free system and (q1, q2) is called the order of noise
dynamics. Here, we suppose the model is proper, i.e. n1, n2 ≥ max(m1,m2).

The dynamics of additive colored noise w is defined as follows:

∑n

i=0
1

∑n2

j=0
Ai,jw (k − i, p− j) =

∑q1

i=0

∑q2

j=0
Ci,jv (k − i, p− j) . (2)

The output vector of MIMO 2D system can be written down in the following
manner:

y (k, p) = −A
(

z−1
1 , z−1

2

)

y (k, p)+B
(

z−1
1 , z−1

2

)

u (k, p)+

+C
(

z−1
1 , z−1

2

)

v (k, p) , (3)

where

y(k, p) = [y1(k, p), y2(k, p), ..., yn(k, p)]
T ∈ Rn×1

and

u(k, p) = [u1(k, p), u2(k, p), ..., um(k, p)]T ∈ Rm×1.

Further, the matrices A, B, and C constitute the polynomial matrices that form
the main transfer matrix of the system, being equivalent to the transfer function
in MIMO systems, and are defined as:

A
(

z−1
1 , z−1

2

)

=
∑n1

i=0

∑n

j=0 2Ai,jz
−i
1 z

−j
2 ; i+j 6= 0

B
(

z−1
1 , z−1

2

)

=
∑m1

i=0

∑m2

j=0 Bi,jz
−i
1 z

−j
2

C
(

z−1
1 , z−1

2

)

= I +
∑q1

i=0

∑q2
j=0 Ci,jz

−i
1 z

−j
2 ; i+j 6= 0,

where I is the unit matrix. Note that (3) is written in terms of combination
of time-space (k, p) domain and complex frequency

(

z−1
1 , z−1

2

)

domain. Such
notation is very common in the literature and is only used to show the output
relationship with polynomials of system transfer matrix (Young, Garnier and
Gilson, 2008; and Shafieirad, Shafiee and Abedi, 2014b).

2.2. Regression equation

The observation equation or the regression equation of MIMO 2D system can
be written down as follows:

y (k, p)
T
= φ (k, p)

T
Θ+ e (k, p)

T
, (4)
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where the matrices φ and Θ are the variable and parameter matrices of the
noise-free system, respectively, and e (k, p) is the observation error term. The
matrices in (4) are defined as follows:

φ (k, p)
T
= [−y (k − 1, p)

T
,−y (k, p− 1)

T
,−y (k − 1, p− 1)

T
, . . . ,

−y (k − n1, p− n2)
T
, u (k, p)

T
, u (k − 1, p)

T
,

u (k, p− 1)
T
, . . . , u (k −m1, p−m2)

T
]

(5)

and

Θ =

















































a11,0 a21,0 · · · an1,0

a10,1 a20,1 · · · an0,1

a11,1 a21,1 · · · an1,1
...

...
. . .

...
a1n1,n2

a2n1,n2
· · · ann1,n2

b10,0 b20,0 · · · bn0,0

b11,0 b21,0 · · · bn1,0
...

...
. . .

...
b1m1,m2

b2m1,m2
· · · bnm1,m2

















































. (6)

In the next section, the parameter estimation algorithm is presented.

3. 2D MIMO Iterative Generalized Least Square Algo-
rithm (2DMIGLS)

In (4), if e (k, p) is white noise, i.e. C
(

z−1
1 , z−1

2

)

= I, the system model is
converted to the ARX model and the unknown coefficient matrices can be es-
timated using Ordinary Least Square method (OLS) without any estimation
bias. However, if e (k, p) is colored noise, i.e. C

(

z−1
1 , z−1

2

)

6= I, this colored
noise should be whitened before using the OLS method. In order to whiten the
colored noise, matrix C must be known. If C is known, the colored noise e (k, p)

turns into white noise by left multiplying Eq. (3) with filter C
(

z−1
1 , z−1

2

)−1
, and

then the OLS method will be applicable. In order to find C−1, an estimation
for e (k, p) as ê (k, p) must be generated first. This estimation can be obtained
from ê = y − φΘ̂ by using the estimated matrix Θ̂, which is determined using
the estimations Â and B̂.

By comparing (3) with (4), we obtain:

e (k, p) = C
(

z−1
1 , z−1

2

)

v (k, p) . (7)
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According to (7), one can get:

C
(

z−1
1 , z−1

2

)−1
e (k, p) = v (k, p) . (8)

The filter C
(

z−1
1 , z−1

2

)−1
is an Infinite Impulse Response (IIR) filter. There-

fore, in order to estimate this filter, a FIR approximation can be formulated as
follows:

C
(

z−1
1 , z−1

2

)−1 △
= D

(

z−1
1 , z−1

2

)

≃ I+
∑r1

i=0

∑r2

j=0
Di,jz

−i
1 z

−j
2 ; i, j 6=0, (9)

where Di,j = [d1i,j , d
2
i,j , ..., d

n
i,j ]

T ∈ Rn×n; i = 0, 1, ..., r1; j = 0, 1, ..., r2.

Since the filter D
(

z−1
1 , z−1

2

)

is an IIR filter, by inverting D
(

z−1
1 , z−1

2

)

, the

C
(

z−1
1 , z−1

2

)

coefficients are obtained as shown further on in this paper, in the
simulation section.

By the substitution of e (k, p) by ê (k, p) in (8) and using (9) we obtain:

D
(

z−1
1 , z−1

2

)

ê (k, p) = v (k, p) . (10)

The regression equation for ê (k, p) can be obtained from (10) as follows:

ê (k, p) = −D10

(

z−1
1 , z−1

2

)

ê (k, p)−D01

(

z−1
1 , z−1

2

)

ê (k, p)−

−Dr1r2

(

z−1
1 , z−1

2

)

ê (k, p) + v (k, p) . (11)

Equation (11) can be written down in the following manner:

ê (k, p)
T
= η (k, p)

T
Υ+ v (k, p)

T
(12)

in which

η(k, p)T = [−ê (k − 1, p)
T
− ê (k, p− 1)

T
− ê (k − r1, p− r2)

T
] (13)

and

Υ =























d1
1,0 d2

1,0 · · · dn
1,0

d1
0,1 d2

0,1 · · · dn
0,1

d1
1,1 d2

1,1 · · · dn
1,1

...
...

. . .
...

d1
r1,r2

d2
r1,r2

· · · dn
r1,r2























. (14)

It is obvious that the observation error in (12) is white noise and the unknown
coefficient matrices Dij can be estimated using OLS.
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Now, by considering (3) and assuming that the estimation of matrix D

(D̂=Ĉ−1) is known, we have the following regression equation:

D̂
(

z−1
1 , z−1

2

)

y (k, p) =

−D̂
(

z−1
1 , z−1

2

)

A
(

z−1
1 , z−1

2

)

y (k, p)+D̂
(

z−1
1 , z−1

2

)

B
(

z−1
1 , z−1

2

)

u (k, p)

+v (k, p) . (15)

Equation (15) can be written down in a new form as:

yf (k, p) = −A
(

z−1
1 , z−1

2

)

yf (k, p)+B
(

z−1
1 , z−1

2

)

uf (k, p) + v (k, p) , (16)

where the terms yf and uf are the prefiltered output and input vectors, respec-

tively. In fact, the output and input of the system are filtered by D̂
(

z−1
1 , z−1

2

)

.

Now, the observation error in (16) is whitened by prefiltering (3) using the
filter D̂=Ĉ−1 and, as previously mentioned, the OLS method can be applied to
estimate the unknown parameter matrices A and B.

The same computations can be repeated again using the new estimations Â
and B̂ to obtain the new estimation of D̂ and then using D̂, the new estimations
of Â and B̂ can be produced. This procedure is repeated iteratively until the
convergence criterion is satisfied.

The parameter estimation process is summarized as 2DMIGLS algorithm,
shown below:

2DMIGLS ALGORITHM

Start (set i = 0 )

1. Sampling : Generate (N1 + 1) × (N2 + 1) sampled input-output data
(0 ≤ k ≤ N1, 0 ≤ p ≤ N2 )

2. Output and variable matrices: Form the output matrix Y and the
variable matrix Φ using output and input data for all values of k, p, as
follows:

Y =











y (0, 0)
T

y (1, 0)
T

...

y (N1, N2)
T











, Φ =











φ (0, 0)
T

φ (1, 0)
T

...

φ (N1, N2)
T











.

3. Initial estimation: Compute the initial estimation of Θ̂0 using the OLS
method as follows:

Θ̂0 =
(

ΦTΦ
)−1

ΦTY

and set the initial value of D̂0 equal to I.
4. Error estimation: Compute ê = y − φΘ̂i .
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5. Observation error regression: Compute the variable matrix of error:

Ê =











ê (0, 0)
T

ê (1, 0)
T

...

ê (N1, N2)
T











, Ψ =











η (0, 0)
T

η (1, 0)
T

...

η (N1, N2)
T











.

6. Noise dynamics estimation: Compute the estimation Υ̂i+1 using the
OLS method as follows:

Υ̂i+1 =
(

ΨTΨ
)−1

ΨT Ê.

7. Prefiltering: Prefilter sampled input and output data using filter D̂i+1.
8. Parameter estimation: Estimate the unknown parameters of system

using prefiltered data and the OLS method as follows:

Θ̂i+1 =
(

ΦT
f Φf

)−1
ΦT

f Yf .

9. Convergence criteria: If the following convergence condition is satisfied,
the algorithm ends. Otherwise, set i = i+ 1 and return to Step 4:

∥

∥

∥

∥

∥

[

Θ̂

Υ̂

]

i+1

−

[

Θ̂

Υ̂

]

i

∥

∥

∥

∥

∥

< ε,

in which ε is a predefined threshold.

End

Remark 1 Note that in Step 3, the initial value of D̂0 is set to I in order to
compute Υ̂0 . In Step 6, according to (14), Υ̂i contains the coefficients of D̂i.
Also, in Step 8, Yf and Φf have the same forms as Y and Φ, with the difference
that u and y are replaced by uf and yf , respectively.

Remark 2 The convergence criterion in the IGLS method can be considered as
constituted by the error between the real and the estimated value of parameters
(estimation error). Thus, if the estimation error is less than a certain upper
bound, called the convergence threshold, and does not exceed this threshold in
the next few iterations, the convergence condition will be assumed to be met.
However, the final accuracy of the estimation will be independent of the choice
of the order of approximated filter D(z−1), and the process will continue until
the convergence criterion will be satisfied. Moreover, the only effect of the order
of approximated filter D(z−1) concerns the convergence rate. It means that the
higher-order approximation (and as a result, the more accurate filter) has higher
convergence rate. Also, approximation of D(z−1

1 , z−1
2 ) with the lower order

(r1, r2) is not necessarily a reason for bias, because the convergence condition
must be satisfied anyway, see Norton (2009). It has been extended to the 2D
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and MIM IO model and the criteria of convergence and error have not been
changed. The above discussion can be explained in the form of following basic
example. Assume C

(

z−1
)

= 1 + c1z
−1. Then, using the Maclaurin Series we

have:

D
(

z−1
)

=
1

C (z−1)
=

1

1 + c1z−1
=

∞
∑

n=0

(−1)
n
(c1z

−1)
n
= 1− c1z

−1 + (c1z
−1)

2
− (c1z

−1)
3
+ . . .

For the stability of filter D
(

z−1
)

the roots of C
(

z−1
)

must be inside the unit
circle. So, in the above example we should have |c1| < 1. Therefore, it can be
concluded that the terms with higher powers have small coefficients and can be
eliminated.

Remark 3 The coefficient vector of C
(

z−1
)

represents the state of the identi-
fication error at the moment k . If the zeros of this polynomial lie outside of the
unit circle, in the time domain, the error tends to an infinite value at t → ∞,
which indicates that the system is unstable and the estimation method is in-
correct, because the purpose of estimation is to reduce the error, specifically, as
concerns the LS method for finding ek = C

(

z−1
)

vk. Therefore, we conclude
that the polynomial zeros of the estimation error must always lie inside the unit
circle, so that the poles of D

(

z−1
)

also lie inside the unit circle, and the filter
is stable.

4. Simulation results

In this section, a numerical example is considered, serving to evaluate the ef-
ficiency of 2DMIGLS Algorithm. Consider the following MIMO 2D ARMAX
model with two inputs and two outputs:

[

y1(k, p)
y2(k, p)

]

=

[

0.6z−1
1 + 0.2z−2

2 + 0.1z−1
1 z−2

2 0.5z−1
1 + 0.1z−2

2 + 0.05z−1
1 z−2

2

−0.8z−1
1 − 0.25z−2

2 − 0.2z−1
1 z−2

2 0.01z−1
1 + 0.33z−2

2 + 0.15z−1
1 z−2

2

]

×

×

[

y1(k, p)
y2(k, p)

]

+

+

[

0.5 + 0.1z−1
1 + 0.8z−3

1 z−2
2 −0.3− 0.8z−1

1 − 0.7z−3
1 z−2

2

0.4 + 1.1z−1
1 + 0.1z−3

1 z−2
2 0.23− 1.5z−1

1 − 0.1z−3
1 z−2

2

] [

u1(k, p)
u2(k, p)

]

+

[

1 + 0.2z−1
1 z−1

2 −0.1z−1
1 z−1

2

−0.1z−1
1 z−1

2 1 + 0.6z−1
1 z−1

2

] [

v1(k, p)
v2(k, p)

]
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where u1(k, p) and u2(k, p) are system inputs and y1(k, p) and y2(k, p) are system
outputs. Further, v1(k, p) and v2(k, p) are white Gaussian noise with zero mean
and variance σ2

v . In order to simulate the above system, the input signals are
assumed to be white Gaussian noise with zero mean and variance 1.

To evaluate the efficiency and accuracy of the 2DMIGLS Algorithm, two
different values for noise variance are chosen. Also, we consider the effect of the
sampled data number on estimation accuracy. Finally, to evaluate the stability
and robustness of 2DMIGLS Algorithm, the Monte-Carlo analysis will be carried
out.

4.1. Sampled data number and noise variance effects

For purposes of studying the effect of the sampled data number on the values of
estimated parameters, the input-output signals are sampled with two different
sampling rates, namely N1 = N2 = 150 and N1 = N2 = 250. Also, in order to
check the effect of noise variance value on parameter estimation, two cases are
considered. For the first, σ2

v is assumed to be equal 1, while for the second one
the assumed value is 16. For both cases the convergence threshold ε is assumed
to be 0.001.

Table 1 shows the estimated parameters using the proposed algorithm. The

a
(l)(r)
i,j shows the entry of lth row and rth column in Ai,j . As it is explained in

Section 2, Ai,j indicates the corresponding coefficients of system output vectors
with i shifts in dimension 1 and j shifts in dimension 2.

In the last row of Table 1, in order to show the high accuracy of estimations,

the values of the relative error δ =
‖θ̂−θ‖
‖θ‖ are presented, where θ is the real

parameter vector and θ̂ corresponds to the estimated parameter vector. It is
clear that the relative error is about 1.5%, which is indeed very small.

According to Table 1, one can see that as the variance of noise increases, the
estimation accuracy decreases. On the other hand, as the number of sampled
data increases, the estimation accuracy becomes, of course, higher.

The magnitudes of the error, understood as the difference between the sys-
tem outputs and the model outputs for the step input with amplitude 1 and 2
for the first and second inputs are shown in Figs. 2 and 3, respectively.

4.2. Output error

In this section, two sinusoidal inputs are applied and the error between the
real and the estimated outputs is analyzed. The number of sampled data is
N1 = N2 = 250. The variance of noise is assumed to be equal to 1.
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Table 1. 2DMIGLS results for various sampled data number and different noise
variance values

Parameter
Variance=1 Variance=16

Real value
N=150 N=250 N=150 N=250

a
(1)(1)
1,0 0.5961 0.5985 0.5902 0.6019 0.6

a
(1)(2)
1,0 0.5000 0.4963 0.4971 0.5010 0.5

a
(1)(1)
0,2 0.1994 0.2033 0.2050 0.1997 0.2

a
(1)(2)
0,2 0.1049 0.1009 0.0864 0.0943 0.1

a
(1)(1)
1,2 0.0864 0.1011 0.1134 0.1021 0.1

a
(1)(2)
1,2 0.0499 0.0486 0.0464 0.0485 0.05

b
(1)(1)
0,0 0.4887 0.4957 0.5085 0.5017 0.5

b
(1)(2)
0,0 -0.2820 -0.2970 -0.3005 -0.3070 -0.3

b
(1)(0)
0,0 0.0842 0.1021 0.0972 0.0854 0.1

b
(1)(2)
1,0 -0.7990 -0.8059 -0.7874 -0.8052 -0.8

b
(1)(1)
3,2 0.8048 0.7976 0.7984 0.8003 0.8

b
(1)(2)
3,2 -0.7019 -0.7025 -0.7077 -0.6917 -0.7

a
(2)(1)
1,0 -0.8017 -0.8015 -0.8005 -0.7979 -0.8

a
(2)(2)
1,0 0.0093 0.0094 0.0143 0.0099 0.01

a
(2)(1)
0,2 -0.2456 -0.2514 -0.2445 -0.2474 -0.25

a
(2)(2)
0,2 0.3264 0.3304 0.3398 0.3304 0.33

a
(2)(1)
1,2 -0.1949 -0.2013 -0.2136 -0.2055 -0.2

a
(2)(2)
1,2 0.1520 0.1472 0.1508 0.1498 -0.15

b
(2)(1)
0,0 0.4103 0.3982 0.3944 0.3808 0.4

b
(2)(2)
0,0 0.2274 0.2331 0.2344 0.2192 0.23

b
(2)(1)
1,0 1.1066 1.1042 1.1107 1.1077 1.1

b
(2)(2)
1,0 -1.5019 -1.5038 -1.4992 -1.5048 -1.5

b
(2)(1)
3,2 0.0995 0.0996 0.1159 0.0957 0.1

b
(2)(2)
3,2 -0.1071 -0.0975 -0.0998 -0.1226 -0.1

c
(1)(1)
1,1 0.1971 0.1987 0.1902 0.2017 0.2

c
(1)(2)
1,1 -0.1062 -0.0996 -0.0976 -0.1021 -0.1

c
(2)(1)
1,1 -0.1171 -0.0991 -0.0872 -0.1121 -0.1

c
(2)(2)
1,1 0.5871 0.5891 0.5864 0.6114 0.6

(%) δ 1.2935 0.4876 1.4557 1.4500
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Figure 2. Error between the first system output and the model for the step
input

Figure 3. Error between the second system output and the model for the step
input
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The inputs are as follows:

u1(k, p) = sin(2k) cos(0.5p)

u2(k, p) = − sin(3k) cos(0.2p).

The output estimation error for y1 and y2 is shown in Figs. 4 and 5, respectively.
It is clear that the error bound is very small (less than 5), and that the estimated
system has been able to regenerate the output signal.

Figure 4. Output error for y1

Since the decoupling condition in MIMO systems is in general not satisfied,
therefore the system cannot be identified as two separate SISO systems. There-
fore, in order to show the effect of interaction between input-output loops in the
real and identified MIMO system, the unit step input is applied to the system
without delay for the first input and the delayed unit step input for the second
input, as this is illustrated in Figs. 6 and 7, respectively. Also, the effect of
interaction on the behavior of the system and the identified model was studied
for the case with the number of 150 data samples in each dimension and the
standard deviation of the noise equal to 4, the respective results being presented
in Figs. 8 and 9.

4.3. Monte-Carlo simulation

In the framework of the Monte-Carlo analysis, the sampling and parameter
estimation process has been performed for 50 times. Table 2 shows the mean
and standard deviation values of estimations in 50 simulations. Monte-Carlo
simulation has been repeated two times, with two different numbers of data
samples, i.e. N1 = N2 = 150 and N1 = N2 = 250.
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Figure 5. Output error for y2

Figure 6. Unit step input without delay for the first input
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Table 2. Monte Carlo results for 2DMIGLS algorithm

Parameter
Variance=1 Variance=16

Real value
SD Mean SD

∗
Mean

a
(1)(1)
1,0 0.0053 0.5992 0.0024 0.5990 0.6

a
(1)(2)
1,0 0.0043 0.4988 0.0027 0.4995 0.5

a
(1)(1)
0,2 0.0070 0.1994 0.0040 0.1995 0.2

a
(1)(2)
0,2 0.0067 0.0998 0.0029 0.0995 0.1

a
(1)(1)
1,2 0.0115 0.1005 0.0066 0.1003 0.1

a
(1)(2)
1,2 0.0086 0.0504 0.0050 0.0499 0.05

b
(1)(1)
0,0 0.0303 0.4976 0.0123 0.4990 0.5

b
(1)(2)
0,0 0.0231 -0.2969 0.0182 -0.3009 -0.3

b
(1)(0)
0,0 0.0262 0.0996 0.0128 0.0975 0.1

b
(1)(2)
1,0 0.0273 -0.8019 0.0141 -0.8059 -0.8

b
(1)(1)
3,2 0.0249 0.7945 0.0150 0.7993 0.8

b
(1)(2)
3,2 0.0315 -0.7005 0.0168 -0.7015 -0.7

a
(2)(1)
1,0 0.0038 -0.7991 0.0027 -0.8001 -0.8

a
(2)(2)
1,0 0.0037 0.0109 0.0025 0.0096 0.01

a
(2)(1)
0,2 0.0054 -0.2509 0.0036 -0.2499 -0.25

a
(2)(2)
0,2 0.0058 0.3307 0.0037 0.3306 0.33

a
(2)(1)
1,2 0.0102 -0.2035 0.0065 -0.2021 -0.2

a
(2)(2)
1,2 0.0054 0.1496 0.0042 0.1491 -0.15

b
(2)(1)
0,0 0.0260 0.4027 0.0135 0.3994 0.4

b
(2)(2)
0,0 0.0200 0.2266 0.0121 0.2321 0.23

b
(2)(1)
1,0 0.0226 1.0990 0.0154 1.1001 1.1

b
(2)(2)
1,0 0.0188 -1.5031 0.0149 -1.5026 -1.5

b
(2)(1)
3,2 0.0214 0.1077 0.0162 0.1012 0.1

b
(2)(2)
3,2 0.0187 -0.1032 0.0148 -0.0991 -0.1

c
(1)(1)
1,1 0.0077 0.1993 0.0045 0.1996 0.2

c
(1)(2)
1,1 0.0189 -0.1012 0.0152 -0.0992 -0.1

c
(2)(1)
1,1 0.0176 -0.1041 0.0141 -0.0983 -0.1

c
(2)(2)
1,1 0.0055 0.5994 0.0023 0.5992 0.6

(%) δ 0.6475 3.1984 0.3706 1.9290

*SD: standard deviation
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Figure 7. Delayed unit step input for the second input

According to Table 2, we can conclude that as the number of data samples is
increased, the mean of the estimated parameters converges to real values. Also,
increase in the number of data samples leads to lower standard deviation.

5. Conclusion

In this paper, a method was considered for parameter estimation of linear MIMO
2D discrete system with ARMAX model. The presented method focused on
generating an unbiased estimation by colored noise without focusing on noise
dynamics estimation directly. However, the inverse of noise dynamics was es-
timated for filtering and whitening, and therefore the noise dynamics was ob-
tained. Simulation results showed that the proposed algorithm estimates the
model parameters accurately. It was also shown that although the increase in
amplitude and variance of noise leads to lowered accuracy, with a larger num-
ber of data samples, the estimation accuracy can be improved. Having real
data, model order determination is the key first step for modeling any dynamic
systems, particularly the two-dimensional processes that can be considered for
future works.
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Figure 9. The second output of the system and the 2DMIGLS model
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