Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aimed to investigate the impact of sample quantity and absorbance levels on the repeatability of results and to evaluate the suitability of the method for exhaust gases with low dust concentrations. In the research use was made of the ANALYSETTE 22 NanoTec laser particle size analyser with wet dispersion. Water was used as the dispersing agent. The study utilised Fritsch Standard F500 reference dust, with a particle size range of 0.5–50 μm, and two dust samples collected from industrial installations. Variations in the results were observed depending on the sample mass introduced into the analyser and the resulting absorbance levels. For the reference dust, repeatable results, consistent with the manufacturer’s specifications, were obtained with absorbance levels of 5–20%. Similarly, the most reproducible results for real dust samples were obtained at comparable absorbance levels. The study emphasized the lack of repeatability at absorbance levels below 5%, which may be attributed to the insufficient amount of dust analysed. It seems necessary to develop an alternative method for collecting dust samples from exhaust gases to avoid relying on dust recovery from filtration materials.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
131--143
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Institute of Environmental Engineering, Polish Academy of Sciences
autor
- Institute of Environmental Engineering, Polish Academy of Sciences
autor
- Institute of Environmental Engineering, Polish Academy of Sciences
Bibliografia
- [1] Advertising Materials of FRITSCH Company.
- [2] Alterary, S.S., & Marei, N.H., (2021). Fly ash properties, characterization, and applications: A review. Journal of King Saud University - Science, 33(6), 101536. https://doi.org/https://doi.org/10.1016/j.jksus.2021.101536
- [3] Cieślik, E., Konieczny, T., & Bobik, B., (2018). Particle Size Distribution of Fly Ash from Co-Incineration of Bituminous Coal with Municipal Solid Waste. E3S Web of Conferences, 28. DOI: https://doi.org/10.1051/e3sconf/20182801008
- [4] Dańko, J., Holtzer, M., Dańko, R., & Grabowska, B., (2008). Analysis and Structure of Waste from Domestic Foundries. Archives of Foundry Engineering, 8, special issue 2, 5–9.
- [5] Derbiszewski, B., Kurek, A., (2018). Analysis of Granulometric Dust Accumulating in Supply and Exhaust Ventilation Filters, E3S Web Conf., 44, 00030. DOI: https://doi.org/10.1051/e3sconf/20184400030
- [6] Gutowski, W., Andrzejewski, R., (1968). Physical Properties of Dusts.
- [7] Hrnčířová, M., Pospíšil, J., & Špiláček, M., (2013). Size analysis of solid particles using laser diffraction and sieve analysis. Engineering Mechanics, 20(3/4), 309–318.
- [8] Hrnčířová, M., Špiláček, M., & Pospíšil, J., (2014). Size Analysis of Solid Particles at the Experimental Device for Multi-Stage Biomass Combustion. Acta Polytechnica, 54(1), 22–27. DOI: https://doi.org/10.14311/AP.2014.54.0022
- [9] Huseynova, Sh.Kh., (2018). Determination of Particle Size Distributions of Industrial Side Streams by Using Laser Diffraction and Sieving Methods. https://api.semanticscholar.org/CorpusID:139691474
- [10] ISO 13320:2020 (E) Particle Size Analysis – Laser Diffraction Methods.
- [11] ISO 14488:2007 Particulate Materials – Sampling and Sample Splitting for the Determination of Particulate Properties.
- [12] ISO 23210:2010 Stationary source emissions – Determination of PM10/PM2.5 mass concentration in flue gas – Measurement at low concentrations by use of impactors
- [13] Konieczyński, J., Komosiński, B., Cieślik, E., Konieczny, T., Mathews, B., Rachwał, T., & Rzońca, G., (2017). Research into Properties of Dust from Domestic Central Heating Boiler Fired with Coal and Solid Biofuels. Archives of Environmental Protection, 43, 20–27. DOI: http://doi.org/10.1515/aep-2017-0019
- [14] Krawczykowski, D., (2017). Application of Laser Diffraction Analysis for Controlling the Granulation of Metal Ore Processing Products. Mineral Engineering, 18(1), 233–240.
- [15] Krawczykowski, D., (2024). Unification of Particle Size Analysis Results, Part 1 – Comparison of Particle Size Distribution Functions Obtained by Various Measurement Methods. Measurement, 238, 115403. DOI: https://doi.org/10.1016/j.measurement.2024.115403
- [16] Krawczykowski, D., Krawczykowska, A. & Trybalski, K., (2012). Laser Particle Size Analysis – The Influence of Density and Particle Shape on Measurement. Mineral Resources Management, 28, 101–112.
- [17] Merkus, H.G., (2009). Particle Size Measurements. Springer.
- [18] Mori, Y., Yoshida, H., & Masuda, H., (2012). Particle Size Analysis by Laser Diffraction Method Using Reference Particles. Advanced Materials Research, (508), 33–37. DOI: 10.4028/www.scientific.net/AMR.508.33.
- [19] Özer, M., & Orhan, M., (2007). Determination of Soil Grain Size Distribution Using Laser Diffraction Method. Politeknik Dergisi, 10(3), 331–337. DOI: https://doi.org/10.2339/2007.10.3.331-337
- [20] PN-Z-04030-07:1994 Air Purity Protection – Testing of Dust Content – Measurement of Dust Concentration and Mass Flow Rate in Exhaust Gases by Gravimetric Method. (in Polish)
- [21] Regulation of the Minister of Climate and Environment of September 7, 2021, on Requirements for Conducting Emission Measurements. (in Polish)
- [22] Sochan, A., Bieganowski, A., Ryżak, M., Dobrowolski, R., & Bartmiński, P., (2012). Comparison of Soil Texture Determined by Two Dispersion Units of Mastersizer 2000. International Agrophysics, 26, 99–102. DOI: http://doi.org/10.2478/v10247-012-0015-9
- [23] Stolina, A.E., & Pimenova, N.V., (2010). Grain-Size Analysis of Silicon Powder. Inorganic Materials, 46, 1536–1540. DOI: https://doi.org/10.1134/S0020168510140116
- [24] Straż, G., & Szostek, M., (2024). The Use of a Laser Diffractometer to Analyze the Particle Size Distribution of Selected Organic Soils. Applied Sciences, 14(18), 8104. DOI: https://doi.org/10.3390/app14188104
- [25] Varga, G., Gresina, F., Újvári, G., Kovács, J., & Szalai, Z. (2019). On the Reliability and Comparability of Laser Diffraction Grain Size Measurements of Paleosols in Loess Records. Sedimentary Geology, 389, 42–53. DOI: https://doi.org/10.1016/j.sedgeo.2019.05.011
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cbabb40-39d5-464c-a0e0-21130a910bdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.