PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Recycling of Bentonite Waste as a Novel and a Low-Cost Adsorbent for Heavy Metals Removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objectives of this study are the thermal remediation of bentonite waste to convert non-hazardous material, and the use of the obtainedthermal recycling bentonite waste (TRBW) as a novel low-cost adsorbent for the removal of heavy metals from aqueous solution using the batch system. The origin of bentonite waste is a by-product from plants of spent engine oil recycling [PSEOR]. It was remediated in two stages, directly burning and in the electrical furnace at 700 °C for 100 minutes to eliminate oil residues and impurities. The tests of XRD, BET, FTIR, EDX, and SEM were accomplished to identify the chemical and physical characteristics of TRBW. After then, the examination of the ability of TRBW to adsorption of the fiveheavy metals (Zn, Ni, Cd, Cr, and Pb) with different experimental parameters such as initial concentration, adsorbent dose, temperature, pH, and contact time. Different models of isotherm, kinetic, and thermodynamic were utilized andthe results indicate that the nature of heavy metals adsorption onto TRBW was homogeneous. According to the maximum adsorption capacities, the metals ranked as Pb> Cd> Zn> Cr> Ni, and adsorption capacities were 94.97, 73.85, 39.56, 38.34, and 36.33 mg/g, respectively.
Rocznik
Strony
288--305
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Civil Engineering Faculty, Babol Noshirvani University Of Technology, Babol, Iran
  • Department of Environmental Engineering, Civil Engineering Faculty, Babol Noshirvani University Of Technology, Babol, Iran
Bibliografia
  • 1. Abdus-Salam, N.,Adekola, F.A. 2005. The influence of pH and adsorbent concentration on adsorption of lead and zinc on a natural goethite. African Journal of Science and Technology, 6(2).
  • 2. Aguilar, J., Almeida-Naranjo, C., Aldás, M. B., Guerrero, V.H. 2020. Acid activation of bentonite clay for recycled automotive oil purification. E3S Web of Conferences, 191, 03002.
  • 3. Ahmaruzzaman, M. 2011. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science, 166(1–2), 36–59.
  • 4. Akpomie, K.G., Dawodu, F.A. 2016. Acid-modified montmorillonite for sorption of heavy metals from automobile effluent. Beni-Suef University Journal of Basic and Applied Sciences, 5(1), 1–12.
  • 5. Al-Essa, K., Khalili, F. 2018. Heavy metals adsorption from aqueous solutions onto unmodified and modified Jordanian kaolinite clay: Batch and column techniques. American Journal of Applied Chemistry, 6(1), 25–34.
  • 6. Amari, A., Gannouni, H., Khan, M.I., Almesfer, M.K., Elkhaleefa, A.M., Gannouni, A. 2018. Effect of structure and chemical activation on the adsorption properties of green clay minerals for the removal of cationic dye. Applied Sciences, 8(11), 2302.
  • 7. Batool, F., Akbar, J., Iqbal, S., Noreen, S., Bukhari, S.N.A. 2018. Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: An overview of linear and nonlinear approach and error analysis. Bioinorganic Chemistry and Applications, 2018.
  • 8. Belhadri, M., Mokhtar, A., Meziani, S., Belkhadem, F., Sassi, M., Bengueddach, A. 2019. Novel low-cost adsorbent based on economically modified bentonite for lead (II) removal from aqueous solutions. Arabian Journal of Geosciences, 12(3), 1–13.
  • 9. Bhattacharyya, K.G., Gupta, S.S. 2006. Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu (II) from aqueous solution. Separation and Purification Technology, 50(3), 388–397.
  • 10. Boulaiche, W., Hamdi, B., Trari, M. 2019. Removal of heavy metals by chitin: Equilibrium, kinetic and thermodynamic studies. Applied Water Science, 9(2), 1–10.
  • 11. Cao, C.-Y., Liang, C.-H., Yin, Y., Du, L.-Y. 2017. Thermal activation of serpentine for adsorption of cadmium. Journal of Hazardous Materials, 329, 222–229.
  • 12. Castro, L., Blázquez, M.L., González, F., Muñoz, J.A., Ballester, A. 2018. Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy, 179, 44–51.
  • 13. Castro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gomez, G.I., Sanabria-González, N.R. 2020. Adsorption of Cr (VI) in aqueous solution using a surfactant-modified bentonite. The Scientific World Journal, 2020.
  • 14. Chen, C., Liu, H., Chen, T., Chen, D., Frost, R.L. 2015. An insight into the removal of Pb (II), Cu (II), Co (II), Cd (II), Zn (II), Ag (I), Hg (I), Cr (VI) by Na (I)-montmorillonite and Ca (II)-montmorillonite. Applied Clay Science, 118, 239–247.
  • 15. Corral Bobadilla, M., Lostado Lorza, R., Somovilla Gómez, F., Escribano García, R. 2020. Adsorptive of nickel in wastewater by olive stone waste: Optimization through multi-response surface methodology using desirability functions. Water, 12(5), 1320.
  • 16. Cukrowicz, S., Grabowski, B., Kaczmarska, K., Bobrowski, A., Sitarz, M., Tyliszczak, B. 2020. Structural Studies (FTIR, XRD) of Sodium Carboxymethyl Cellulose Modified Bentonite. Archives of Foundry Engineering, 20.
  • 17. de Pablo, L., Chávez, M.L., Abatal, M. 2011. Adsorption of heavy metals in acid to alkaline environments by montmorillonite and Ca-montmorillonite. Chemical Engineering Journal, 171(3), 1276–1286.
  • 18. Đukić, A.B., Kumrić, K.R., Vukelić, N.S., Dimitrijević, M.S., Baščarević, Z.D., Kurko, S.V., Matović, L.L. 2015. Simultaneous removal of Pb2+, Cu2+, Zn2+ and Cd2+ from highly acidic solutions using mechanochemically synthesized montmorillonite–kaolinite/TiO2 composite. Applied Clay Science, 103, 20–27.
  • 19. Eloussaief, M., Kallel, N., Yaacoubi, A., Benzina, M. 2011. Mineralogical identification, spectroscopic characterization, and potential environmental use of natural clay materials on chromate removal from aqueous solutions. Chemical Engineering Journal, 168(3), 1024–1031.
  • 20. Esmael, A.I., Matta, M.E., Halim, H.A., Azziz, F.A. 2014. Adsorption of heavy metals from industrial wastewater using palm date pits as low cost adsorbent. Int J Eng Adv Technol, 3, 71–76.
  • 21. Ewis, D., Benamor, A., Ba-Abbad, M.M., Nasser, M., El-Naas, M., Qiblawey, H. 2020. Removal of oil content from oil-water emulsions using iron oxide/bentonite nano adsorbents. Journal of Water Process Engineering, 38, 101583.
  • 22. Fatiha, M., Belkacem, B. 2016. Adsorption of methylene blue from aqueous solutions using natural clay. J. Mater. Environ. Sci, 7(1), 285–292.
  • 23. Gottipati, R. 2012. Preparation and characterization of microporous activated carbon from biomass and its application in the removal of chromium (VI) from aqueous phase.
  • 24. Gupta, S., Kumar, A. 2019. Removal of nickel (II) from aqueous solution by biosorption on A. barbadensis Miller waste leaves powder. Applied Water Science, 9(4), 1–11.
  • 25. Güzel, F., Sayğılı, H., Sayğılı, G.A., Koyuncu, F. 2015. New low-cost nanoporous carbonaceous adsorbent developed from carob (Ceratonia siliqua) processing industry waste for the adsorption of anionic textile dye: Characterization, equilibrium and kinetic modeling. Journal of Molecular Liquids, 206, 244–255.
  • 26. Hansen, H.K., Arancibia, F., Gutiérrez, C. 2010. Adsorption of copper onto agriculture waste materials. Journal of Hazardous Materials, 180(1–3), 442–448.
  • 27. Ho, Y.-S., McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.
  • 28. Huang, L., Zhou, Y., Guo, X., Chen, Z. 2015. Simultaneous removal of 2, 4-dichlorophenol and Pb (II) from aqueous solution using organoclays: Isotherm, kinetics and mechanism. Journal of Industrial and Engineering Chemistry, 22, 280–287.
  • 29. Hussain, S., Abid, M.A., Munawar, K.S., Saddiqa, A., Iqbal, M., Suleman, M., Hussain, M., Riaz, M., Ahmad, T., Abbas, A. 2021. Choice of suitable economic adsorbents for the reduction of heavy metal pollution load. Polish Journal of Environmental Studies, 30(3).
  • 30. Inglezakis, V.J., Stylianou, M.A., Gkantzou, D., Loizidou, M.D. 2007. Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination, 210(1–3), 248–256.
  • 31. Jaber, W. 2020. Sorption of engine oil from aqueous solution into ricinus communis leaves in three-phase fluidized bed reactor [Thesis]. Baghdad.
  • 32. Jalees, M.I., Farooq, M.U., Basheer, S., Asghar, S. 2019. Removal of heavy metals from drinking water using Chikni Mitti (kaolinite): Isotherm and kinetics. Arabian Journal for Science and Engineering, 44(7), 6351–6359.
  • 33. Jellali, S., Azzaz, A.A., Jeguirim, M., Hamdi, H., Mlayah, A. 2021. Use of lignite as a low-cost material for cadmium and copper removal from aqueous solutions: Assessment of adsorption characteristics and exploration of involved mechanisms. Water, 13(2), 164.
  • 34. Karapinar, N., Donat, R. 2009. Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination, 249(1), 123–129.
  • 35. Kaya, A., Ören, A.H. 2005. Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials, 125(1–3), 183–189.
  • 36. Kim, Y.-S., Kim, J.-H. 2019. Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. The Journal of Chemical Thermodynamics, 130, 104–113.
  • 37. Kumar, A., Lingfa, P. 2020. Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737–742.
  • 38. Li, Q., Chai, L., & Qin, W. (2012). Cadmium (II) adsorption on esterified spent grain: Equilibrium modeling and possible mechanisms. Chemical Engineering Journal, 197, 173–180.
  • 39. Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., Tao, Q., Ayoko, G.A. 2016. Adsorption of phenol and Cu (II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 283, 880–888.
  • 40. Malakahmad, A., Tan, S., Yavari, S. 2016. Valorization of wasted black tea as a low-cost adsorbent for nickel and zinc removal from aqueous solution. Journal of Chemistry, 2016.
  • 41. Malandrino, M., Abollino, O., Giacomino, A., Aceto, M., Mentasti, E. 2006. Adsorption of heavy metals on vermiculite: Influence of pH and organic ligands. Journal of Colloid and Interface Science, 299(2), 537–546.
  • 42. Marin, N.M., Dinu, L., Stanculescu, I., Cristea, N.I., Ionescu, A.I. 2021. Maize stalk material for on-site treatment of highly polluted leachate and mine wastewater. Materials, 14(4), 956.
  • 43. Mbadcam, J.K., Anagho, S.G., Nsami, J.N. 2011. Kinetic and equilibrium studies of the adsorption of lead (II) ions from aqueous solution onto two Cameroon clays: Kaolinite and smectite. Journal of Environmental Chemistry and Ecotoxicology, 3(11), 290–297.
  • 44. Meneguin, J.G., Moisés, M.P., Karchiyappan, T., Faria, S.H.B., Gimenes, M.L., de Barros, M.A.S., Venkatachalam, S. 2017. Preparation and characterization of calcium treated bentonite clay and its application for the removal of lead and cadmium ions: Adsorption and thermodynamic modeling. Process Safety and Environmental Protection, 111, 244–252.
  • 45. Mishra, P.C., Patel, R.K. 2009. Removal of lead and zinc ions from water by low cost adsorbents. Journal of Hazardous Materials, 168(1), 319–325.
  • 46. Miyah, Y., Lahrichi, A., Idrissi, M., Boujraf, S., Taouda, H., Zerrouq, F. 2017. Assessment of adsorption kinetics for removal potential of Crystal Violet dye from aqueous solutions using Moroccan pyrophyllite. Journal of the Association of Arab Universities for Basic and Applied Sciences, 23, 20–28.
  • 47. Mohammed, A.A., Brouers, F., Sadi, S.I., Al-Musawi, T.J. 2018. Role of Fe3O4 magnetite nanoparticles used to coat bentonite in zinc (II) ions sequestration. Environmental Nanotechnology, Monitoring & Management, 10, 17–27.
  • 48. Moussout, H., Ahlafi, H., Aazza, M., Maghat, H. 2018. Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala International Journal of Modern Science, 4(2), 244–254.
  • 49. Nwosu, F.O., Ajala, O.J., Owoyemi, R.M., Raheem, B.G. 2018. Preparation and characterization of adsorbents derived from bentonite and kaolin clays. Applied Water Science, 8(7), 1–10.
  • 50. Ofomaja, A.E., Naidoo, E.B., Pholosi, A. 2020. Intraparticle diffusion of Cr (VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study. South African Journal of Chemical Engineering, 32(1), 39–55.
  • 51. Paluszkiewicz, C., Holtzer, M., Bobrowski, A. 2008. FTIR analysis of bentonite in moulding sands. Journal of Molecular Structure, 880(1–3), 109–114.
  • 52. Panda, L., Jena, S.K., Rath, S.S., Misra, P.K. 2020. Heavy metal removal from water by adsorption using a low-cost geopolymer. Environmental Science and Pollution Research, 27(19), 24284–24298.
  • 53. Papandreou, A., Stournaras, C.J., Panias, D. 2007. Copper and cadmium adsorption on pellets made from fired coal fly ash. Journal of Hazardous Materials, 148(3), 538–547.
  • 54. Pavan Kumar, G., Malla, K.A., Yerra, B., Srinivasa Rao, K. 2019. Removal of Cu (II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks. Applied Water Science, 9(3), 1–9.
  • 55. Potgieter, J.H., Potgieter-Vermaak, S.S., Kalibantonga, P.D. 2006. Heavy metals removal from solution by palygorskite clay. Minerals Engineering, 19(5), 463–470.
  • 56. Puchongkawarin, C., Mattaraj, S., Umpuch, C. 2021. Experimental and modeling studies of methylene blue adsorption onto Na-Bentonite clay. Engineering and Applied Science Research, 48(3), 268–279.
  • 57. Riahi, K., Chaabane, S., Thayer, B.B. 2017. A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode. Journal of Saudi Chemical Society, 21, S143–S152.
  • 58. Ritz, M., Vaculíková, L., Plevová, E. 2011. Application of infrared spectroscopy and chemometric methods to identification of selected minerals.
  • 59. Romdhane, D.F., Satlaoui, Y., Nasraoui, R., Charef, A., Azouzi, R. 2020. Adsorption, modeling, thermodynamic, and kinetic studies of methyl red removal from textile-polluted water using natural and purified organic matter rich clays as low-cost adsorbent. Journal of Chemistry, 2020.
  • 60. Rostami, E., Norouzbeigi, R., Rahbar, A. 2018. Thermal and chemical modification of bentonite for adsorption of an anionic dye. Advances in Environmental Technology, 4(1), 1–12.
  • 61. Sen, T.K., Gomez, D. 2011. Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite. Desalination, 267(2–3), 286–294.
  • 62. Shaheen, S.M., Tsadilas, C.D., Rinklebe, J. 2013. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Advances in Colloid and Interface Science, 201, 43–56.
  • 63. Shirsath, D.S., Shirivastava, V.S. 2015. Adsorptive removal of heavy metals by magnetic nanoadsorbent: An equilibrium and thermodynamic study. Applied Nanoscience, 5(8), 927–935.
  • 64. Simonin, J.-P. 2016. On the comparison of pseudofirst order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300, 254–263.
  • 65. Skvortsov, A.V., Islamova, G.G., Ryazanova, A.S., Sayakhov, R.I., Mishagin, K.A., Tverdov, I.D., Khayrullina, Z.Z., Khatsrinova, Y.A. 2021. Development of organobentonite based on bentonite clay for the purpose of disposing of oil spills on water bodies. IOP Conference Series: Earth and Environmental Science, 815(1), 012036.
  • 66. Smičiklas, I., Smiljanić, S., Perić-Grujić, A., Šljivić-Ivanović, M., Mitrić, M., Antonović, D. 2014. Effect of acid treatment on red mud properties with implications on Ni (II) sorption and stability. Chemical Engineering Journal, 242, 27–35.
  • 67. Taher, T., Rohendi, D., Mohadi, R., Lesbani, A. 2018. Thermal and Acid Activation (TAA) of bentonite as adsorbent for removal of methylene blue: A kinetics and thermodynamic study. Chiang Mai Journal of Science, 45(4), 1770–1781.
  • 68. Ugwu, E.I., Tursunov, O., Kodirov, D., Shaker, L.M., Al-Amiery, A.A., Yangibaeva, I., Shavkarov, F. 2020. Adsorption mechanisms for heavy metal removal using low cost adsorbents: A review. IOP Conference Series: Earth and Environmental Science, 614(1), 012166.
  • 69. Ullah, S., Ur Rahman, A., Ullah, F., Rashid, A., Arshad, T., Viglašová, E., Galamboš, M., Mahmoodi, N.M., Ullah, H. 2021. Adsorption of Malachite Green Dye onto Mesoporous Natural Inorganic Clays: Their Equilibrium Isotherm and Kinetics Studies. Water, 13(7), 965.
  • 70. Weber Jr, W.J., Morris, J.C. 1963. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–59.
  • 71. Zulfikar, M.A., Setiyanto, H., Djajanti, S.D. 2013. Effect of temperature and kinetic modelling of lignosulfonate adsorption onto powdered eggshell in batch systems. Songklanakarin Journal of Science & Technology, 35(3).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cb68792-8720-4c7e-b216-191c391a8680
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.