Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Biomass, primarily derived from photosynthesizing plants harnessing solar energy, is crucial for ecosystem functioning and diverse services. This study delved into the unique ecosystem of coal mine heaps, exploring unexpected relations between abiotic factors and biomass in spontaneous vegetation. Biomass quantity and quality are influenced by such factors as plant photosynthesis efficiency, necessitating an understanding of dynamics on post-mining sites. The conducted investigation focused on diverse spontaneous vegetation on coal mine heaps, analyzing abiotic conditions such as soil texture, water holding capacity, pH, electrical conductivity, nitrogen, carbon, magnesium, sodium, and acidity. Contrary to the adopted hypothesis, nitrogen content negatively correlates with soil total nitrogen, carbon, and water holding capacity. However, the biomass of dominant plant species positively correlates with available phosphorus, pH, calcium, and sodium. These unexpected relationships highlight biomass dynamics complexity in novel ecosystems on coal mine heaps, stressing the need to consider spontaneous vegetation biomass as a valuable resource and ecosystem service in urban-industry landscapes. The obtained findings expand scientific inquiry and have practical implications for post-industrial area reclamation. Understanding biomass potential in identified vegetation types provides insights into biomass character on coal mine heaps, crucial for maximizing spontaneous vegetation potential and transforming post-industrial landscape reclamation approaches.
Czasopismo
Rocznik
Tom
Strony
79--100
Opis fizyczny
Bibliogr. 136 poz., rys., tab.
Twórcy
autor
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, The University of Silesia in Katowice, ul. Jagiellońska 28, Katowice, 40-032, Poland
autor
- Institute of Environmental Protection and Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, Bielsko-Biała, 43-309, Poland
autor
- Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7a, 31-261 Krakow, Poland
autor
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, The University of Silesia in Katowice, ul. Jagiellońska 28, Katowice, 40-032, Poland
Bibliografia
- 1. Aber, J.D., Nadelhoffer, K.J., Steudler, P., Melillo, J.M. 1989. Nitrogen saturation in northern forest ecosystems excess nitrogen from fossil fuel combustion may stress the biosphere. BioScience, 39(6), 378–386. https://doi.org/10.2307/1311067
- 2. Aerts, R. 1999. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. Journal of Experimental Botany, 50(330), 29–37. https://doi.org/10.1093/ JXB/50.330.29
- 3. Ali, A., Lin, S.L., He, J.K., Kong, F.M., Yu, J.H., & Jiang, H.S. 2019. Tree crown complementarity links positive functional diversity and aboveground biomass along large-scale ecological gradients in tropical forests. The Science of the Total Environment, 656, 45–54. https://doi.org/10.1016/J. SCITOTENV.2018.11.342
- 4. Ali, A., Sanaei, A., Nalivan, O.A., Ahmadaali, K., Pour, M.J., Valipour, A., … Askari, Y. 2020. Environmental filtering, predominance of strong competitor trees and exclusion of moderate-weak competitor trees shape species richness and biomass. Science of The Total Environment, 723, 138105. https://doi. org/10.1016/J.SCITOTENV.2020.138105
- 5. Ali, A., & Yan, E.R. 2017. The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. Forest Ecology and Management, 401, 125–134. https:// doi.org/10.1016/J.FORECO.2017.06.056
- 6. Aragão, A., Jacobs, S., Cliquet, A. 2016. What’s law got to do with it? Why environmental justice is essential to ecosystem service valuation. Ecosystem Services, 22, 221–227. https://doi.org/10.1016/J. ECOSER.2016.09.012
- 7. Band, N., Kadmon, R., Mandel, M., DeMalach, N. 2022. Assessing the roles of nitrogen, biomass, and niche dimensionality as drivers of species loss in grassland communities. Proceedings of the National Academy of Sciences of the United States of America, 119(10), e2112010119. https://doi. org/10.1073/PNAS.2112010119/SUPPL_FILE/ PNAS.2112010119.SAPP.PDF
- 8. Baral, H., Guariguata, M.R., Keenan, R.J. 2016. A proposed framework for assessing ecosystem goods and services from planted forests. Ecosystem Services, 22, 260–268. https://doi.org/10.1016/J. ECOSER.2016.10.002
- 9. Bardgett, R.D., Bowman, W.D., Kaufmann, R., Schmidt, S.K. 2005. A temporal approach to linking aboveground and belowground ecology. Trends in Ecology Evolution, 20(11), 634–641. https://doi. org/10.1016/J.TREE.2005.08.005
- 10. Bell, G. 2001. Neutral Macroecology. Science, 293(5539), 2413–2418. https://doi.org/10.1126/ SCIENCE.293.5539.2413
- 11. Berg, C.E., Mineau, M.M., Rogers, S.H. 2016. Examining the ecosystem service of nutrient removal in a coastal watershed. https://doi.org/10.1016/j. ecoser.2016.06.007
- 12. Bierza, W., Czarnecka, J., Błońska, A., KompałaBąba, A., Hutniczak, A., Jendrzejek, B., … Woźniak, G. 2023. Plant diversity and species composition in relation to soil enzymatic activity in the novel ecosystems of urban–industrial landscapes. Sustainability, 15(9), 7284. https://doi.org/10.3390/ SU15097284
- 13. Binkley, D., Burnham, H., Lee Allen, H. 1999. Water quality impacts of forest fertilization with nitrogen and phosphorus. Forest Ecology and Management, 121(3), 191–213. https://doi.org/10.1016/ S0378-1127(98)00549-0
- 14. Binkley, D., Giardina, C. 1998. Why do tree species affect soils? The Warp and Woof of Tree-soil Interactions. Biogeochemistry, 42(1), 89–106. https:// doi.org/10.1023/A:1005948126251
- 15. Błońska, A., Kompalła-Baba, A., Sierka, E., Bierza, W., Magurno, F., Besenyei, L., … Woźniak, G. 2019. Diversity of vegetation dominated by selected grass species on coal-mine spoil heaps in terms of reclamation of post-industrial areas. Journal of Ecological Engineering, 20(2), 209–217. https://doi. org/10.12911/22998993/93870
- 16. Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., … De Vries, A.W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20(1), 30–59.
- 17. Boet, O., Arnan, X., Retana, J. 2020. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLOS ONE, 15(2), e0228625. https://doi.org/10.1371/JOURNAL.PONE.0228625
- 18. Bolan, N.S. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134(2), 189–207. https://doi. org/10.1007/BF00012037
- 19. Bünemann, E.K. 2015. Assessment of gross and net mineralization rates of soil organic phosphorus – A review. Soil Biology and Biochemistry, 89, 82–98. https://doi.org/10.1016/J.SOILBIO.2015.06.026
- 20. Carroll, I.T., Cardinale, B.J., Nisbet, R.M. 2011. Niche and fitness differences relate the maintenance of diversity to ecosystem function. Ecology, 92(5), 1157–1165. https://doi.org/10.1890/10-0302.1
- 21. Carroll, I.T., Cardinale, B.J., Nisbet, R.M. 2012. Niche and fitness differences relate the maintenance of diversity to ecosystem function: reply. Ecology, 93(6), 1487–1491. https://doi. org/10.1890/11-0792.1A
- 22. Castellanos, A.E., Llano-Sotelo, J.M., Machado-Encinas, L.I., López-Piña, J.E., Romo-Leon, J.R., Sardans, J., Peñuelas, J. 2018. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert. Plant ecology, 219(7), 775–788. https://doi.org/10.1007/ S11258-018-0833-3
- 23. Caswell, H., Reed, F., Stephenson, S.N., Werner, P.A. 1973. Photosynthetic Pathways and Selective Herbivory: A Hypothesis. American Naturalist, 107(956), 465–480. https://doi.org/10.1086/282851
- 24. Chase, J.M., Leibold, M.A. 2004. Ecological Niches: Linking Classical and Contemporary Approaches (Vol. 13). Retrieved from https:// books.google.pl/books?hl=pl&lr=&id=Tj9bEA AAQBAJ&oi=fnd&pg=PR5&ots=6zar4m9fDC &sig=gUlOOVTS-cjbhUf2HH8stpuNVcU&red ir_esc=y#v=onepage&q&f=false
- 25. Chen, J. Bin, Dong, C.C., Yao, X.D., Wang, W. 2018. Effects of nitrogen addition on plant biomass and tissue elemental content in different degradation stages of temperate steppe in northern China. Journal of Plant Ecology, 11(5), 730–739. https:// doi.org/10.1093/JPE/RTX035
- 26. Coã Teâ, L., Brown, S., Pareâ, D., Fyles, J., Bauhus, J. 2000. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood. Soil Biology & Biochemistry, 32, 1079–1090. Retrieved from www.elsevier.com/locate/soilbio
- 27. Colgan, M.S., Asner, G.P. 2014. Coexistence and environmental filtering of species-specific biomass in an African savanna. Ecology, 95(6), 1579–1590. https://doi.org/10.1890/13-1160.1
- 28. Cusack, D.F., Silver, W.L., Torn, M.S., Burton, S.D., Firestone, M.K. 2011. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology, 92(3), 621–632. https://doi.org/10.1890/10-0459.1
- 29. De Groot, C.C., Marcelis, L.F.M., Van Den Boogaard, R., Lambers, H. 2001. Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. Plant, Cell & Environment, 24(12), 1309–1317. https://doi. org/10.1046/J.0016-8025.2001.00788.X
- 30. DeMalach, N., Kadmon, R. 2017. Light competition explains diversity decline better than niche dimensionality. Functional Ecology, 31(9), 1834–1838. https://doi.org/10.1111/1365-2435.12841
- 31. Dini-Andreote, F., Stegen, J.C., Van Elsas, J.D., & Salles, J.F. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America, 112(11), E1326–E1332. https://doi.org/10.1073/PNAS.1414261112
- 32. Eberwein, J., Shen, W., Jenerette, G.D. 2017. Michaelis-Menten kinetics of soil respiration feedbacks to nitrogen deposition and climate change in subtropical forests. Scientific Reports, 7(1). https:// doi.org/10.1038/S41598-017-01941-8
- 33. Enquist, B.J., Niklas, K.J. 2001. Invariant scaling relations across tree-dominated communities. Nature, 410(6829), 655–660. https://doi. org/10.1038/35070500
- 34. Fahey, T.J., Yavitt, J.B., Sherman, R.E., Maerz, J.C., Groffman, P.M., Fisk, M.C., & Bohlen, P.J. 2013. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest. Ecological Applications, 23(5), 1185–1201. https://doi.org/10.1890/12-1760.1
- 35. Falkengren-Grerup, U., Brunet, J., Diekmann, M. 1998. Nitrogen mineralisation in deciduous forest soils in south Sweden in gradients of soil acidity and deposition. Environmental Pollution, 102(1), 415–420. https://doi.org/10.1016/ S0269-7491(98)80062-6
- 36. Fodelianakis, S., Lorz, A., Valenzuela-Cuevas, A., Barozzi, A., Booth, J.M., Daffonchio, D. 2019. Dispersal homogenizes communities via immigration even at low rates in a simplified synthetic bacterial metacommunity. Nature Communications, 10(1), 1314–1314. https://doi.org/10.1038/ S41467-019-09306-7
- 37. Franzke, A., Reinhold, K. 2011. Stressing food plants by altering water availability affects grasshopper performance. Ecosphere, 2(7), 1–13. https://doi. org/10.1890/ES11-00095.1
- 38. Frouz, J. 2018. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma, 332, 161–172. https://doi. org/10.1016/J.GEODERMA.2017.08.039
- 39. Frouz, J., Prach, K., Pižl, V., Háněl, L., Starý, J., Tajovský, K., … Řehounková, K. 2008. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology, 44(1), 109–121. Retrieved from https://www.academia.edu/13459794/Interactions_between_soil_development_vegetation_and_soil_fauna_during_spontaneous_succession_in_post_mining_sites
- 40. Futa, B., Mocek-Płóciniak, A. 2016. The influence of uncontrolled grass burning on biochemical qualities of soil. Journal of Research and Applications in Agricultural Engineering, 61(3).
- 41. Gerhold, P., Cahill, J.F., Winter, M., Bartish, I.V., Prinzing, A. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 29(5), 600–614. https://doi.org/10.1111/1365-2435.12425
- 42. Giardina, C.P., Ryan, M.G., Hubbard, R.M., Binkley, D. 2001. Tree Species and Soil Textural Controls on Carbon and Nitrogen Mineralization Rates. Soil Science Society of America Journal, 65(4), 1272–1279. https://doi.org/10.2136/SSSAJ2001.6541272X
- 43. Gilbert, B. 2012. Joint consequences of dispersal and niche overlap on local diversity and resource use. Journal of Ecology, 100(1), 287–296. https:// doi.org/10.1111/J.1365-2745.2011.01908.X
- 44. Goberna, M., Navarro-Cano, J.A., Valiente-Banuet, A., García, C., Verdú, M. 2014. Abiotic stress tolerance and competition-related traits underlie phylogenetic clustering in soil bacterial communities. Ecology Letters, 17(10), 1191–1201. https://doi. org/10.1111/ELE.12341
- 45. Grace, J.B., Anderson, T. M., Seabloom, E. W., Borer, E.T., Adler, P.B., Harpole, W.S., … Smith, M.D. 2016. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529(7586), 390–393. https://doi.org/10.1038/ NATURE16524
- 46. Grant, K., Kreyling, J., Dienstbach, L.F.H., Beierkuhnlein, C., Jentsch, A. (2014). Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland. Agriculture, Ecosystems and Environment, 186, 11–22. https://doi.org/10.1016/J. AGEE.2014.01.013
- 47. Grime, J.P. 1973. Competitive Exclusion in Herbaceous Vegetation. Nature, 242(5396), 344–347. https://doi.org/10.1038/242344A0
- 48. Grime, J.P. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86(6), 902–910. https://doi. org/10.1046/J.1365-2745.1998.00306.X
- 49. Gutbrodt, B., Mody, K., Dorn, S. 2011. Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos, 120(11), 1732–1740. https://doi. org/10.1111/J.1600-0706.2011.19558.X
- 50. Harpole, W.S., Sullivan, L.L., Lind, E.M., Firn, J., Adler, P.B., Borer, E.T., … Stevens, C.J. 2017. Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity. Functional Ecology, 31(9), 1839–1846. https:// doi.org/10.1111/1365-2435.12967
- 51. Hassink, J. 1997. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil, 191(1), 77–87. https:// doi.org/10.1023/A:1004213929699/METRICS
- 52. Hautier, Y., Niklaus, P.A., Hector, A. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science, 324(5927), 636–638. https://doi.org/10.1126/SCIENCE.1169640/SUPPL_FILE/HAUTIER.SOM.PDF
- 53. Heisler-White, J.L., Blair, J.M., Kelly, E.F., Harmoney, K., Knapp, A. K. 2009. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Global Change Biology, 15(12), 2894–2904. Retrieved from https://www. academia.edu/20544513/Contingent_productivity_responses_to_more_extreme_rainfall_regimes_ across_a_grassland_biome
- 54. Helfenstein, J., Jegminat, J., McLaren, T. I., Frossard, E. 2018. Soil solution phosphorus turnover: Derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies. Biogeosciences, 15(1), 105–114. https:// doi.org/10.5194/BG-15-105-2018
- 55. Helfenstein, J., Tamburini, F., von Sperber, C., Massey, M.S., Pistocchi, C., Chadwick, O.A., … Frossard, E. 2018. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nature Communications, 9(1), 1–9. https://doi.org/10.1038/s41467-018-05731-2
- 56. Helingerová, M., Frouz, J., Šantrůčková, H. 2010. Microbial activity in reclaimed and unreclaimed post-mining sites near Sokolov (Czech Republic). Ecological Engineering, 36(6), 768–776. https://doi. org/10.1016/J.ECOLENG.2010.01.007
- 57. Hobbs, R.J., Arico, S., Aronson, J., Baron, J.S., Bridgewater, P., Cramer, V.A., … Zobel, M. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 15(1), 1–7. https://doi. org/10.1111/J.1466-822X.2006.00212.X
- 58. Homeier, J., Hertel, D., Camenzind, T., Cumbicus, N. L., Maraun, M., Martinson, G. O., … Leuschner, C. 2012. Tropical Andean Forests Are Highly Susceptible to Nutrient Inputs—Rapid Effects of Experimental N and P Addition to an Ecuadorian Montane Forest. PLOS ONE, 7(10), e47128. https://doi. org/10.1371/JOURNAL.PONE.0047128
- 59. Hou, E., Luo, Y., Kuang, Y., Chen, C., Lu, X., Jiang, L., … Wen, D. 2020. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 11(1), 1–9. https://doi. org/10.1038/s41467-020-14492-w
- 60. Hubbell, S. P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton: Princeton University Press.
- 61. Isabwe, A., Ren, K., Wang, Y., Peng, F., Chen, H., Yang, J. 2019. Community Assembly Mechanisms Underlying the Core and Random Bacterioplankton and Microeukaryotes in a River–Reservoir System. Water, 11(6), 1127. https://doi.org/10.3390/ W11061127
- 62. Jamieson, M.A., Trowbridge, A.M., Raffa, K.F., Lindroth, R.L. 2012. Consequences of climate warming and altered precipitation patterns for plantinsect and multitrophic interactions. Plant Physiology, 160(4), 1719–1727. https://doi.org/10.1104/ PP.112.206524
- 63. Jenkinson, D.S. 1990. The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 329(1255), 361–368. https:// doi.org/10.1098/RSTB.1990.0177
- 64. Jiao, S., Yang, Y., Xu, Y., Zhang, J., Lu, Y. 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. The ISME Journal, 14(1), 202. https://doi.org/10.1038/S41396-019-0522-9
- 65. Knapp, A.K., Fay, P.A., Blair, J.M., Collins, S.L., Smith, M.D., Carlisle, J.D., … McCarron, J.K. 2002. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science (New York, N.Y.), 298(5601), 2202–2205. https://doi. org/10.1126/SCIENCE.1076347
- 66. Kompała-Bąba, A., Bierza, W., Błońska, A., Sierka, E., Magurno, F., Chmura, D., … Woźniak, G. 2019). Vegetation diversity on coal mine spoil heaps – how important is the texture of the soil substrate? Biologia. https://doi.org/10.2478/s11756-019-00218-x
- 67. Kowarik, I. 2011. Novel urban ecosystems, biodiversity, and conservation. Environmental Pollution. https://doi.org/10.1016/j.envpol.2011.02.022
- 68. Kraft, N.J.B., Valencia, R., Ackerly, D.D. 2008. Functional traits and niche-based tree community assembly in an Amazonian forest. Science (New York, N.Y.), 322(5901), 580–582. https://doi. org/10.1126/SCIENCE.1160662
- 69. Lamošová, T., Doležal, J., Lanta, V., Lepš, J. 2010. Spatial pattern affects diversity-productivity relationships in experimental meadow communities. Acta Oecologica. https://doi.org/10.1016/j. actao.2010.02.005
- 70. Lane, A., Jarvis, A. 2007. Changes in climate will modify the geography of crop suitability: agricultural biodiversity can help with adaptation. SAT EJournal. Retrieved from https://cgspace.cgiar.org/ handle/10568/43252
- 71. Laux, M., Torgan, L.C. 2015. Which metric to choose? Differences between abundance and biomass responses to environmental conditions in a planktonic diatom community. Hydrobiologia, 744(1), 63–76. https://doi.org/10.1007/ S10750-014-2056-5/METRICS
- 72. LeBauer, D.S., Treseder, K.K. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371–379. https://doi.org/10.1890/06-2057.1
- 73. Looney, C.E., D’amato, A.W., Fraver, S., Palik, B.J., Reinikainen, M. R., Looney, C. 2016. Examining the influences of tree-to-tree competition and climate on size-growth relationships in hydric, multiaged Fraxinus nigra stands.
- 74. Lowe, W.H., McPeek, M.A. 2014. Is dispersal neutral? Trends in Ecology & Evolution, 29(8), 444450. https://doi.org/10.1016/J.TREE.2014.05.009
- 75. Lu, X.K., Mo, J.M., Gundersern, P., Zhu, W.X., Zhou, G.Y., Li, D.J., Zhang, X. 2009. Effect of Simulated N Deposition on Soil Exchangeable Cations in Three Forest Types of Subtropical China. Pedosphere, 19(2), 189–198. https://doi.org/10.1016/ S1002-0160(09)60108-9
- 76. Lu, X., Mao, Q., Gilliam, F.S., Luo, Y., Mo, J. 2014. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20(12), 3790–3801. https://doi.org/10.1111/ GCB.12665
- 77. Lucas, R.W., Klaminder, J., Futter, M.N., Bishop, K.H., Egnell, G., Laudon, H., Högberg, P. 2011. A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. Forest Ecology and Management, 262(2), 95–104. https://doi.org/10.1016/J. FORECO.2011.03.018
- 78. Lutz, J.A., Furniss, T.J., Johnson, D.J., Davies, S.J., Allen, D., Alonso, A., … Zimmerman, J.K. 2018. Global importance of large‐diameter trees. Global Ecology and Biogeography, 27(7), 849–864. https:// doi.org/10.1111/GEB.12747
- 79. MacArthur, R.H., Wilson, E.O. 2001. The Theory of Island Biogeography. In Nature, 413. Woodstock: Princeton University Press.
- 80. Małek, S., Astel, A. 2009. Sustainability of Picea abies of Istebna provenance in Dupniański Stream catchment as dependent on stand age class. Dendrobiology, 155(61 Supplement), 517–527. https://doi. org/10.1016/J.ENVPOL.2008.01.031
- 81. Mao, Q., Lu, X., Zhou, K., Chen, H., Zhu, X., Mori, T., Mo, J. 2016. Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest. https://doi.org/10.1016/j. geoderma.2016.09.017
- 82. Markowicz, A., Woźniak, G., Borymski, S., Piotrowska-Seget, Z., Chmura, D. 2015. Links in the functional diversity between soil microorganisms and plant communities during natural succession in coal mine spoil heaps. Ecological Research, 30(6), 1005–1014. https://doi.org/10.1007/ S11284-015-1301-3/FIGURES/2
- 83. Martiny, J.B.H., Bohannan, B.J.M., Brown, J. H., Colwell, R.K., Fuhrman, J.A., Green, J.L., … Staley, J.T. 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews. Microbiology, 4(2), 102–112. https://doi.org/10.1038/ NRMICRO1341
- 84. Mattson, W.J., Haack, R.A. 1987. The Role of Drought in Outbreaks of Plant-eating Insects. BioScience 37(2), 110–118. https://www.fs.usda.gov/ research/treesearch/11998
- 85. McGill, B.J. 2010. Towards a unification of unified theories of biodiversity. Ecology Letters, 13(5), 627–642. https://doi.org/10.1111/J.1461-0248.2010.01449.X
- 86. Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15–19. https://doi.org/10.1016/J. TPLANTS.2005.11.002
- 87. Müller, T., Höper, H. 2004. Soil organic matter turnover as a function of the soil clay content: consequences for model applications. Soil Biology & Biochemistry, 36(6), 877–888. https://doi. org/10.1016/J.SOILBIO.2003.12.015
- 88. Newman, E.I. 1973. Competition and Diversity in Herbaceous Vegetation. Nature, 244(5414), 310. https://doi.org/10.1038/244310A0
- 89. Novák, J., & Prach, K. 2003. Vegetation succession in basalt quarries: Pattern on a landscape scale. Applied Vegetation Science. https://doi.org/10.1111/ j.1654-109X.2003.tb00570.x
- 90. Oberson, A., Joner, E.J. 2005. Microbial turnover of phosphorus in soil. Organic Phosphorus in the Environment, 133–164. https://doi. org/10.1079/9780851998220.0133
- 91. Orwin, K.H., Ostle, N., Wilby, A., Bardgett, R.D. 2014. Effects of species evenness and dominant species identity on multiple ecosystem functions in model grassland communities. Oecologia, 174(3), 979–992. https://doi.org/10.1007/ S00442-013-2814-5
- 92. Östman, Ö., Drakare, S., Kritzberg, E.S., Langenheder, S., Logue, J.B., Lindström, E.S. 2012. Importance of space and the local environment for linking local and regional abundances of microbes. Aquatic Microbial Ecology, 67(1), 35-U158. https:// doi.org/10.3354/AME01581
- 93. Peralta-Maraver, I., Galloway, J., Posselt, M., Arnon, S., Reiss, J., Lewandowski, J., Robertson, A.L. 2018. Environmental filtering and community delineation in the streambed ecotone. Scientific Reports 8(1), 1–11. https://doi.org/10.1038/ s41598-018-34206-z
- 94. Poorter, L., van der Sande, M.T., Thompson, J., Arets, E.J.M.M., Alarcón, A., Álvarez-Sánchez, J., … Peña-Claros, M. 2015. Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24(11), 1314–1328. https://doi. org/10.1111/GEB.12364
- 95. Rahmonov, O., Czajka, A., Nádudvari, Á., Fajer, M., Spórna, T., Szypuła, B. 2022. Soil and Vegetation Development on Coal-Waste Dump in Southern Poland. International Journal of Environmental Research and Public Health, 19(15), 9167. https:// doi.org/10.3390/IJERPH19159167/S1
- 96. Rahmonov, O., Pukowiec-Kurda, K., Banaszek, J., & Brom, K. 2020. Floristic diversity in selected city parks in southern Poland. Ochrona Srodowiska i Zasobow Naturalnych, 30(4), 8–17. https://doi. org/10.2478/OSZN-2019-0020
- 97. Rajaniemi, T. K. 2003. Explaining productivity-diversity relationships in plants. Oikos, 101(3), 449–457. https://doi.org/10.1034/J.1600-0706.2003.12128.X
- 98. Ramos, F.T., Dores, E.F. de C., Weber, O.L. do. S., Beber, D.C., Campelo, J.H., & Maia, J.C.d.S. 2018. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. Journal of the Science of Food and Agriculture, 98(9), 3595–3602. https://doi.org/10.1002/ JSFA.8881
- 99. Rawlik, M., Kasprowicz, M., Jagodziński, A.M. 2018. Differentiation of herb layer vascular flora in reclaimed areas depends on the species composition of forest stands. Forest Ecology and Management, 409, 541–551. https://doi.org/10.1016/J. FORECO.2017.11.055
- 100. Rhoades, C.C. 1996. Single-tree influences on soil properties in agroforestry: Lessons from natural forest and savanna ecosystems. Agroforestry Systems, 35(1), 71–94. https://doi.org/10.1007/ BF02345330/METRICS
- 101. Roberts, M.J., Long, S.P., Tieszen, L.L., Beadle, C.L. 1985. Measurement of plant biomass and net primary production. Techniques in Bioproductivity and Photosynthesis, 1–19. https://doi.org/10.1016/ B978-0-08-031999-5.50011-X
- 102. Rosindell, J., Hubbell, S.P., Etienne, R.S. 2011. The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology & Evolution, 26(7), 340–348. https://doi.org/10.1016/J. TREE.2011.03.024
- 103. Rosling, A., Midgley, M.G., Cheeke, T., Urbina, H., Fransson, P., & Phillips, R.P. 2016. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytologist, 209(3), 1184–1195. https://doi.org/10.1111/NPH.13720
- 104. Rundle, H.D., Nosil, P. 2005. Ecological speciation. Ecology Letters, 8(3), 336–352. https://doi. org/10.1111/J.1461-0248.2004.00715.X
- 105. Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., … Wall, D.H. 2000. Global biodiversity scenarios for the year 2100. Science (New York, N.Y.), 287(5459), 1770–1774. https://doi.org/10.1126/SCIENCE.287.5459.1770
- 106. Schimel, D. . 1986. Carbon and nitrogen turnover in adjacent grassland and cropland ecosystems. Biogeochemistry, 2(4), 345–357. https://doi. org/10.1007/BF02180325/METRICS
- 107. Shi, Z., Xu, X., Souza, L., Wilcox, K., Jiang, L., Liang, J., … Luo, Y. 2016. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest. Nature Communications, 7, 11973. https://doi.org/10.1038/NCOMMS11973
- 108. Silvertown, J. 2004. Plant coexistence and the niche. Trends in Ecology and Evolution, 19(11), 605611. https://doi.org/10.1016/j.tree.2004.09.003
- 109. Sinsabaugh, R.L., Gallo, M.E., Lauber, C., Waldrop, M.P., Zak, D.R. 2005. Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry, 75(2), 201–215. https://doi. org/10.1007/S10533-004-7112-1/METRICS
- 110. Six, J., Elliott, E.., Paustian, K. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under notillage agriculture. Soil Biology and Biochemistry, 32(14), 2099–2103. Retrieved from https://www. academia.edu/14487255/Soil_macroaggregate_ turnover_and_microaggregate_formation_a_ mechanism_for_C_sequestration_under_no_tillage_agriculture
- 111. Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., … Konopka, A. 2013. Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 7(11), 2069–2079. https://doi. org/10.1038/ISMEJ.2013.93
- 112. Stevens, C. J., Duprè, C., Dorland, E., Gaudnik, C., Gowing, D.J.G., Bleeker, A., … Dise, N.B. 2010. Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution, 158, 2940–2945. https://doi.org/10.1016/j. envpol.2010.06.006
- 113. Tafazoli, M., Hojjati, S.M., Jalilvand, H., Lamersdorf, N. 2019. Simulated Nitrogen Deposition Reduces the Concentration of Soil Base Cations in Acer velutinum Bioss. Plantation, North of Iran. Journal of Soil Science and Plant Nutrition, 19(2), 440–449. https://doi.org/10.1007/ S42729-019-00048-5
- 114. Tilman, D. 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 10854–10861. https://doi.org/10.1073/ PNAS.0403458101
- 115. Toledo, D., Kreuter, U.P., Sorice, M.G., Taylor, C.A. 2012. To Burn or Not to Burn: Ecological Restoration, Liability Concerns, and the Role of Prescribed Burning Associations. Rangelands, 34(2), 18–23. https:// doi.org/10.2111/RANGELANDS-D-11-00037.1
- 116. Tropek, R., Kadlec, T., Hejda, M., Kocarek, P., Skuhrovec, J., Malenovsky, I., … Konvicka, M. 2012. Technical reclamations are wasting the conservation potential of post-mining sites. A case study of black coal spoil dumps. Ecological Engineering. https://doi.org/10.1016/j. ecoleng.2011.10.010
- 117. Tscharntke, T., Greiler, H.J. 1995. Insect communities, grasses, and grasslands. Annual Review of Entomology, 40, 535–558. https://doi.org/10.1146/ ANNUREV.EN.40.010195.002535
- 118. Vellend, M. 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85(2), 183–206. https://doi.org/10.1086/652373
- 119. Vellend, M. 2016. The Theory of Ecological Communities (MPB-57). In The Theory of Ecological Communities (MPB-57). https://doi. org/10.1515/9781400883790/HTML
- 120. Vellend, M., Srivastava, D.S., Anderson, K.M., Brown, C.D., Jankowski, J.E., Kleynhans, E.J., … Maclean, J.E. 2014. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos, 123, 1420–1430. https://doi. org/10.1111/oik.01493
- 121. Vitousek, P.M., Howarth, R.W. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13(2), 87–115. https://doi. org/10.1007/BF00002772/METRICS
- 122. Walker, T.W., Syers, J.K. 1976. The fate of phosphorus during pedogenesis. Geoderma, 15(1), 1–19. https://doi.org/10.1016/0016-7061(76)90066-5
- 123. Wang, W.J., Dalal, R.C., Moody, P.W., Smith, C.J. 2003. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biology and Biochemistry, 2(35), 273–284. Retrieved from https:// www.infona.pl//resource/bwmeta1.element. elsevier-9c3c84af-8446-3955-b42d-87ee4be5ac29
- 124. Washbourne, C.L., Goddard, M.A., Le Provost, G., Manning, D.A.C., Manning, P. 2020. Trade-offs and synergies in the ecosystem service demand of urban brownfield stakeholders. Ecosystem Services, 42, 101074. https://doi.org/10.1016/J. ECOSER.2020.101074
- 125. Weiser, J.N., Ferreira, D.M., Paton, J.C. 2018. Streptococcus pneumoniae: transmission, colonization and invasion. Nature Reviews. Microbiology, 16(6), 355–367. https://doi.org/10.1038/ S41579-018-0001-8
- 126. White, R., Murray, S., Rohweder, M. 2000. Pilot Analysis of global ecosystems: Grassland Ecosystems. World Resources InstituteWashington, DC.
- 127. Wilson, D.S. 1992. Complex Interactions in Metacommunities, with Implications for Biodiversity and Higher Levels of Selection. Ecology, 73(6), 1984–2000. https://doi.org/10.2307/1941449
- 128. Woźniak, G. 2010. Zróżnicowanie roślinności na zwałach pogórniczych Górnego Śląska = Diversity of vegetation on coal-mine heaps of the Upper Silesia (Poland). Instytut Botaniki Im. W. Szafera. PAN. Dział Wydawnictw.
- 129. Woźniak, G., Chmura, D., Małkowski, E., Zieleźnik-Rusinowska, P., Sitko, K., Ziemer, B., Błońska, A. 2021. Is the age of novel ecosystem the factor driving arbuscular mycorrhizal colonization in poa compressa and calamagrostis epigejos? Plants, 10(5). https://doi.org/10.3390/ PLANTS10050949
- 130. Xu, X., Sherry, R.A., Niu, S., Li, D., Luo, Y. 2013. Net primary productivity and rain-use eff iciency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Global Change Biology, 19(9), 2753–2764. https://doi. org/10.1111/GCB.12248
- 131. Yachi, S., Loreau, M. 2007. Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecology Letters, 10(1), 54–62. https://doi. org/10.1111/J.1461-0248.2006.00994.X
- 132. Yan, E.-R., Yan, E.-R., Wang, X.-H., Wang, X.-H., Huang, J.-J., Huang, J.-J., … Zhou, W. 2008. Decline of soil nitrogen mineralization and nitrification during forest conversion of evergreen broadleaved forest to plantations in the subtropical area of Eastern China. Biogeochemistry, 89(2), 239251. https://doi.org/10.1007/S10533-008-9216-5
- 133. Yang, K., Zhu, J., Gu, J., Yu, L., Wang, Z. 2015. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation. Annals of Forest Science, 72(4), 435442. https://doi.org/10.1007/S13595-014-0444-7/ TABLES/2
- 134. Zalasiewicz, J., Waters, C.N., Ivar do Sul, J.A., Corcoran, P.L., Barnosky, A.D., Cearreta, A., … Yonan, Y. 2016. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene, 13, 4–17. https://doi. org/10.1016/J.ANCENE.2016.01.002
- 135. Zarif, N., Khan, A., Wang, Q. 2020. Linking Soil acidity to P fractions and exchangeable base cations under increased N and P fertilization of mono and mixed plantations in Northeast China. Forests 2020, 11(12), 1274. https://doi.org/10.3390/F11121274
- 136. Zhang, H., Shi, L., Wen, D., Yu, K. 2016. Soil potential labile but not occluded phosphorus forms increase with forest succession. Biology and Fertility of Soils, 52(1), 41–51. https://doi.org/10.1007/ S00374-015-1053-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cadfcd9-f49a-4ce9-a3ff-a4aa72f64d00