PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A blade design performance based off-design loss prediction method for axial flow compressors and cascades

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A series of compressor and cascade test recordings are studied to investigate the off-design loss prediction method. The blade design performance is used to predict the off-design loss changing rate at all operating conditions through analytical derivations and statistical correlation studies. The linear correlation between the incidence and a non-dimensional blade loading factor is the foundation of the prediction method. The off-design incidence is normalized using the off-design blade loading factor for different series of blade designs. An analytical method is introduced to predict the off-design blade loading factor based on design parameters and linear correlation. The changing rate of the off-design loss against the blade loading factor is empirically given through statistical analysis. In application, the prediction method can be used to demonstrate the design space of the off-design incidence for a blade series. The modification of the endwall and the rotor tip loss is recommended to give a more accurate prediction in those regions.
Rocznik
Strony
973--985
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China
autor
  • School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China
  • School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China
autor
  • AECC Commercial Aircraft Engine Co., Ltd., Shanghai, China
Bibliografia
  • 1. Aungier R.H., 2003, Axial Flow Compressors: A Strategy for Aerodynamic Design and Analysis, ASME Press, New York, p. 131
  • 2. Banjac M., Petrovic M.V., 2018, Development of method and computer program for multi- -stage axial compressor design: Part II – Two-dimensional design and validation using CFD, ASME Proceedings, GT2018-75412
  • 3. Boyer K.M., O’Brien W.F., 2002, An improved streamline curvature approach for off-design analysis of transonic axial compression systems, ASME Proceedings, GT2002-30444
  • 4. Cetin M., Ucer A.S., Hirsch C., Serovy G.K., 1987, Application of modified loss and deviation correlations to transonic axial compressors, AGARD Report, 745
  • 5. Cumpsty N.A., 2004, Compressor Aerodynamics, 2nd ed. Krieger Publishing Company, p. 137-140
  • 6. Denton J.D., 1978, Throughflow calculations for transonic axial-flow turbines, Journal of Engineering for Power, 100, 212-218
  • 7. Denton J.D., 2017, MULTALL – an open source, CFD based, turbomachinery design system, ASME Proceedings, GT2017-63993
  • 8. Emery J.C., 1957, Low-speed cascade investigation of thin low-camber NACA 65-series blade sections at high inlet angles, NACA Report, RML57E03
  • 9. Herrig L.J., Emery J.C., Erwin J.R., 1951, Systematic two-dimensional cascade tests of NACA 65-series compressor, NACA Report, TR1368
  • 10. Jasen W., Moffatt W.C., 1967, The off-design analysis of axial-flow compressors, Journal of Engineering for Power, 89, 453-462
  • 11. Konig W.M., Hennecke D.K., Fottner L. ¨ , 1996, Improved blade profile loss and deviation angle models for advanced transonic compressor bladings: Part I – A model for subsonic flow, Journal of Turbomachinery, 118, 73-80
  • 12. Leggett J., Priebe S., Shabbir A., Michelassi V., Sandberg R., Richardson E., 2018, Loss prediction in an axial compressor cascade at off-design incidences with free stream disturbances using large eddy simulation, Journal of Turbomachinery, 140, 071005
  • 13. Lewis G.W. Jr., Tysl E.R., 1974, Overall and blade-element performance of a 1.20-pressure- -ratio fan stage at design blade setting angle, NASA Report, TMX3101
  • 14. Lewis G.W. Jr., Reid L., Tysl E.R., 1974, Design and performance of a high-pressure-ratio, highly loaded axial-flow transonic compressor stage, NASA Report, TMX3100
  • 15. Moore R.D., Reid L., 1980, Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design pressure ratio of 2.05, NASA Report, TP1659
  • 16. Moore R.D., Reid L., 1982a, Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.63 and 1.78, respectively, and with design pressure ratio of 1.82, NASA Report, TP1974
  • 17. Moore R.D., Reid L., 1982b, Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.63 and 1.77, respectively, and with design pressure ratio of 2.05, NASA Report, TP2001
  • 18. Osborn W.M., Moore R.D., Steinke R.J., 1978, Aerodynamic performance of a 1.35-pressure- -ratio axial-flow fan stage, NASA Report, TP1299
  • 19. Pollard D., Gostelow J.P., 1967, Some experiments at low speed on compressor cascades, Journal of Engineering for Gas Turbines and Power, 89, 427-436
  • 20. Reid L., Moore R.D., 1978, Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design pressure ratio of 1.82, NASA Report, TP1338
  • 21. Schnoes M., Nicke E., 2015, Automated calibration of compressor loss and deviation correlations, ASME Proceedings, GT2015-42644
  • 22. Schnoes M., Nicke E., 2017, A database of optimal airfoils for axial compressor throughflow design, Journal of Turbomachinery, 139, 051008
  • 23. Swan W.C., 1961, A practical method of predicting transonic-compressor performance, Journal of Engineering for Gas Turbines and Power Power, 83, 322-330
  • 24. Urasek D.C., Gorrell W.T., Cunnan W.S., 1979, Performance of two-stage fan having low- -aspect-ratio, first-stage rotor blading, NASA Report, TP1493
  • 25. Wisler D.C., 1977, Core compressor exit stage study. Vol. I – Blading design, NASA Report, CR135391
  • 26. Wisler D.C., 1980, Core compressor exit stage study. Vol. II – Data and performance report for the baseline configurations, NASA Report, CR159498
  • 27. Wu D., Teng J., Qiang X., Feng J., 2017, An implicit off-design deviation angle correlation of axial flow compressor blade elements, ASME Proceedings, GT2017-63189
  • 28. Zhang L., Congiu F., Gan X., Karunakara D., 2017, Performance prediction and optimization of low pressure steam turbine radial diffuser at design and off-design conditions using streamline curvature method, Journal of Engineering for Gas Turbines and Power, 139, 072601-1
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8cabcc46-c4d9-42eb-954e-baced498e5ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.