Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the investigation of the AC dielectric properties of optical glass rods co-doped with Ag nanoparticles. The samples presented a molar composition of 20Sb 2O 3 –30GeO2 − (45 − 𝑥)H3BO3 –5Al2O3 –𝑥Ag and differed with Ag concentration 𝑥 in the range of 0.1 mol·%–0.6 mol·% as well as geometric dimensions. The rods have been prepared by the standard melt-quenching technique. An impedance spectroscopy in the measurement frequency range of 4 Hz–8 MHz at room temperature was used to determine the dielectric properties of rods. The paper shows frequency characteristics for impedance, phase shift angle, resistance, conductivity, dissipation factor, and both components of permittivity. The samples demonstrate high resistance (4.4 × 106 < 𝑅 < 2.0 × 1011 Ω) and mostly negative phase shift angle (0 < 𝜃 ≤ −90◦ ), which indicates the purely dielectric nature of the materials and their capacitive character. Introducing Ag NPs into the rod’s structure causes growth in the impedance of about 40–120%, amplifies the real part of the permittivity over fivefold, and increases the electrical conductivity from two to 4.5 times, depending on frequency 𝑓 . Resistance, conductivity, dissipation factor, and imaginary part of permittivity demonstrate two-step saddle-shape dependencies that reflect dielectric and conduction processes between non- or partly oxidized or fully oxidized Ag nanoparticles separated by a glass matrix. The saddle points are different for low and high frequency regions, the values of which are next to 500 Hz and 5 × 105 Hz, respectively, referring to two relaxation times in the interphase polarization process. Hopping conductivity has been proposed as the charge transfer mechanism in nanocomposite rods.
Czasopismo
Rocznik
Tom
Strony
617--629
Opis fizyczny
Bibliogr. 47 poz., wykr., wz.
Twórcy
autor
- Lublin University of Technology, Department of Electrical Engineering and Superconductivity Technologies, 38A Nadbystrzycka St., 20-618 Lublin, Poland
autor
- Białystok University of Technology, Faculty of Electrical Engineering, 45D Wiejska St., 15-351 Białystok, Poland
autor
- Białystok University of Technology, Faculty of Electrical Engineering, 45D Wiejska St., 15-351 Białystok, Poland
autor
- Białystok University of Technology, Faculty of Electrical Engineering, 45D Wiejska St., 15-351 Białystok, Poland
autor
- Białystok University of Technology, Faculty of Electrical Engineering, 45D Wiejska St., 15-351 Białystok, Poland
autor
- Białystok University of Technology, Faculty of Electrical Engineering, 45D Wiejska St., 15-351 Białystok, Poland
- Lublin University of Technology, Department of Electrical Engineering and Superconductivity Technologies, 38A Nadbystrzycka St., 20-618 Lublin, Poland
Bibliografia
- [1] Jalali A., Kheradmandkeysomi M., Buahom P., Gupta T., Habibpour S., Omranpour H., Yu A.P., Sain M., Park C.B., Engineering lightweight Poly(lactic acid) graphene nanoribbon nanocomposites for sustainable and stretchable electronics: Achieving exceptional electrical conductivity and electromagnetic interference shielding with enhanced thermal conductivity, Carbon, vol. 226, 119196 (2024), DOI: 10.1016/j.carbon.2024.119196.
- [2] Wang S.J., Xu P., Xu X.Y., Kang D., Chen J., Li Z., Huang X.Y., Tailoring the Electrical Energy Storage Capability of Dielectric Polymer Nanocomposites via Engineering of the Host–Guest Interface by Phosphonic Acids, Molecules, vol. 27, no. 21, 7225 (2022), DOI: 10.3390/molecules27217225.
- [3] Aquino F.T., Caixeta F.J., de Oliveira Lima K., Kochanowicz M., Dorosz D., Gonçalves R.R., Broadband NIR emission from rare earth doped-SiO2-Nb2𝑂5 and SiO2-Ta2𝑂5 nanocomposites, Journal of Luminescence, vol. 199, pp. 138–142 (2018), DOI: 10.1016/j.jlumin.2018.03.018.
- [4] Ja’farawy M.S.A., Thirumalai D., Lee J.W., Jung H.S., Chang S.C., Yoon J.H., Kim D.H., Graphene quantum dot nanocomposites: electroanalytical and optical sensor technology perspective, Journal of Analytical Science and Technology, vol. 14, no. 1, 29 (2023), DOI: 10.1186/s40543-023-00393-2.
- [5] Bijulin Greety D.J., Wessley G.J.J., A study on EMI shielding in aircraft: introduction, methods and significance of using electrospun nanocomposites, Journal of Space Safety Engineering, vol. 11, no. 1, pp. 150–160 (2024), DOI: 10.1016/j.jsse.2024.01.001.
- [6] Nur-E-Alam M., Basher M.K., Vasiliev M., Das N., Physical Vapor-Deposited Silver (Ag)-Based Metal-Dielectric Nanocomposites for Thin-Film and Coating Applications, Applied Sciences, vol. 11, no. 15, 6746 (2021), DOI: 10.3390/app11156746.
- [7] Niguma R., Matsuyama T., Wada K., Okamoto K., Novel Plasmonic Metamaterials Based on Metal Nano-Hemispheres and Metal-Dielectric Composites, Photonics, vol. 11, no. 4, 356 (2024), DOI: 10.3390/photonics11040356.
- [8] Boiko O., Drozdenko D., Minárik P., Dielectric properties, polarization process, and charge transport in granular (FeCoZr)𝑥(Pb(ZrTi)O3)(100−𝑥) nanocomposites near the percolation threshold, AIP Advances, vol. 12, no. 2 (2022), DOI: 10.1063/6.0001356.
- [9] Meng X.X., Zhou W.Y., Chen X.L., Kong F.R., Zhao J.H., Li W.W., Zhang Y.Q., Wang F., Yuan M.X., Synergistic regulation of intra-particle and inter-particle polarizations in BaTiO3@Al2𝑂3/PVDF nanocomposites towards boosted overall dielectric properties, Materials Today Chemistry, vol. 43, 102492 (2025), DOI: 10.1016/j.mtchem.2024.102492.
- [10] Kim M.N., Lee H., Cho J., Oh M.J., Kim S.H., Jang J.U., Kim S.Y., Facile engineering strategy to control polymer chain structure for enhanced dispersion, electrical and sensing properties of nanocomposites, Composites Part A: Applied Science and Manufacturing, vol. 176, 107827 (2024), DOI: 10.1016/j.compositesa.2023.107827.
- [11] Kolodziej L., Iwasińska-Kowalska O., Wróblewski G., Giżewski T., Jakubowska M., Lekawa-Raus A., Hydrogels and Carbon Nanotubes: Composite Electrode Materials for Long-Term Electrocardiography Monitoring, Journal of Functional Biomaterials, vol. 15, no. 5, 113 (2024), DOI: 10.3390/jfb15050113.
- [12] Tong Y., Liu Y. M., Zhang D., Wu J. W., Lai J. G., Ju S. S., Li J. A., Li Y. T., Liu J. C., Effect of interfacial area and particle size on the microstructure and dielectric properties of BaTiO3-SiO2 nanocomposites, Journal of Materials Science: Materials in Electronics, vol. 35, no. 12, 843 (2024), DOI: 10.1007/s10854-024-12614-4.
- [13] Biliak K., Nikitin D., Ali-Ogly S., Protsak M., Pleskunov P., Tosca M., Sergievskaya A., Cornil D., Cornil J., Konstantinidis S., Kosutová T., Cernochová Z., Stepánek P., Hanus J., Kousal J., Hanyková L., Krakovsky I., Choukourov A., Plasmonic Ag/Cu/PEG nanofluids prepared when solids meet liquids in the gas phase, Nanoscale Advances, vol. 5, no. 3, pp. 955–969 (2023), DOI: 10.1039/D2NA00785A.
- [14] Boiko O., Stryczewska H. D., Komarzyniec G. K., Ebihara K., Aoqui S., Yamazato M., Zagirnyak M., Key factors enhancing the electrical properties of nanofluids. A mini-review of the applications in the energy-related sectors, Archives of Electrical Engineering, vol. 73, no. 4, pp. 1137–1160 (2024), DOI: 10.24425/aee.2024.152115.
- [15] Nikitin D., Biliak K., Pleskunov P., Ali-Ogly S., Cervenkova V., Carstens N., Adejube B., Strunskus T., Cernochova Z., Stepanek P., Bajtosova L., Cieslar M., Protsak M., Tosca M., Lemke J., Faupel F., Biederman H., Vahl A., Choukourov A., Resistive Switching Effect in Ag-poly(ethylene Glycol) Nanofluids: Novel Avenue Toward Neuromorphic Materials, Advanced Functional Materials, vol. 34, no. 12, 2310473 (2024), DOI: 10.1002/adfm.202310473.
- [16] Nasralla N. H. S., Mousa S. M., El-Bassyouni G.T., El Komy G. M., Synthesis of cobalt nanoparticles in polystyrene matrix enhanced optical, dielectric, and magnetic properties, Surfaces and Interfaces, vol. 48, 104291 (2024), DOI: 10.1016/j.surfin.2024.104291.
- [17] Koltunowicz T. N., Zukowski P., Boiko O., Saad A., Fedotova J. A., Fedotov A. K., Larkin A. V., Kasiuk J., AC Hopping Conductance in Nanocomposite Films with Ferromagnetic Alloy Nanoparticles in a PbZrTiO3 Matrix, Journal of Electronic Materials, vol. 44, no. 7, pp. 2260–2268 (2015), DOI: 10.1007/s11664-015-3685-9.
- [18] Ning T., Lu H., Zhou Y., Man B., Decrease and enhancement of third-order optical nonlinearity in metal–dielectric composite films, Applied Physics Letters, vol. 112, no. 15, 151904 (2018), DOI: 10.1063/1.5022129.
- [19] Jiménez J. A., Lysenko S., Vikhnin V. S., Liu H., Interfacial Effects in the Relaxation Dynamics of Silver Nanometal-Glass Composites Probed by Transient Grating Spectroscopy, Journal of Electronic Materials, vol. 39, no. 1, pp. 138–143 (2010), DOI: 10.1007/s11664-009-0961-6.
- [20] Louzguine-Luzgin D. V., Jiang J., On Long-Term Stability of Metallic Glasses, Metals, vol. 9, 1076 (2019), DOI: 10.3390/met9101076.
- [21] Dhar A., Choudhury N., Sen R., Advancements in fabrication technology for rare-earth doped optical fibers: A retrospective analysis, Optics Communications, vol. 577, 131463 (2025), DOI: 10.1016/j.optcom.2024.131463.
- [22] Brückner V., Nonlinearities in Glass Fibers, in Elements of Optical Networking, Springer Vieweg, Wiesbaden (2024).
- [23] Kadathala L., Park Y. O., Kim J. H., Lee J.S., Won J. C., Kim Y. H., Han W. T., Kim B. H., Low dielectric properties of alkali-free aluminoborosilicate fiber glasses for PCB applications at 10 GHz, Scientific Reports, vol. 14, no. 1, 27749 (2024), DOI: 10.1038/s41598-024-79456-2.
- [24] Wang L., Zhang Q. M., Du J., Structural characteristics and dielectric properties of glass-ceramic nanocomposites of (Pb,Sr)Nb2𝑂6 -NaNbO3-SiO2, Transactions of Nonferrous Metals Society of China, vol. 20, no. 8, 1434–1438 (2010), DOI: 10.1016/S1003-6326(09)60317-4.
- [25] Bahgat A. A., Moustafa M. G., Shaisha E. E., Enhancement of Electric Conductivity in Transparent Glass-Ceramic Nanocomposites of Bi2𝑂3-BaTiO3 Glasses, Journal of Materials Science & Technology, vol. 29, no. 12, pp. 1166–1176 (2013), DOI: 10.1016/j.jmst.2013.08.005.
- [26] Zhang J. S., Hou D. J., Wang J., Liu H. X., Huang C., Cheng S., Zhou L., Shen Z. H., Li B. W., Zhou J., Zhang P.C., Chen W., Bioinspired Dielectric Nanocomposites with High Charge-Discharge Efficiency Enabled by Superspreading-Induced Alignment of Nanosheets, ACS Applied Materials & Interfaces, vol. 16, no. 11, pp. 14162–14170 (2024), DOI: 10.1021/acsami.3c19546.
- [27] Czajkowski K., Optical properties of antimony-borate glass rods co-doped with Eu3+ /Ag+ ions, Photonics Letters of Poland, vol. 13, no. 4, 94 (2021), DOI: 10.4302/plp.v13i4.1119.
- [28] Zmojda J., Kochanowicz M., Miluski P., Baranowska A., Pisarski W. A., Pisarska J., Jadach R., Sitarz M., Dorosz D., Structural and optical properties of antimony-germanate-borate glass and glass fiber co-doped Eu3+ and Ag nanoparticles, Spectrochim Acta A Mol Biomol Spectrosc, vol. 201, pp. 1–7 (2018), DOI: 10.1016/j.saa.2018.04.051.
- [29] Zmojda J., Kochanowicz M., Miluski P., Baranowska A., Basa A., Jadach R., Sitarz M., Dorosz D., The influence of Ag content and annealing time on structural and optical properties of SGS antimony-germanate glass doped with Er3+ ions, Journal of Molecular Structure, vol. 1160, pp. 428–433 (2018), DOI: 10.1016/j.molstruc.2018.02.030.
- [30] Veber A., Lu Z., Vermillac M., Pigeonneau F., Blanc W., Petit L., Nano-Structured Optical Fibers Made of Glass-Ceramics, and Phase Separated and Metallic Particle-Containing Glasses, Fibers, vol. 7, 105 (2019), DOI: 10.3390/fib7120105.
- [31] Zmojda J., Miluski P., Kochanowicz M., Nanocomposite Antimony-Germanate-Borate Glass Fibers Doped with Eu3+ Ions with Self-Assembling Silver Nanoparticles for Photonic Applications, Applied Sciences, vol. 8, 790 (2018), DOI: 10.3390/app8050790.
- [32] Sun H. B., Zhang H. L., Liu S. T., Ning N. Y., Zhang L. Q., Tian M., Wang Y., Interfacial polarization and dielectric properties of aligned carbon nanotubes/polymer composites: The role of molecular polarity, Composites Science and Technology, vol. 154, pp. 145–153 (2018), DOI: 10.1016/j.compscitech.2017.11.008.
- [33] Prasad V., Suresh B., Kostrzewa M., Gandhi Y., Ingram A., Reddy A.S.S., Kumar V.R., Veeraiah N., Dielectric dispersion, dipolar relaxation and a.c. conduction phenomena of NiO doped lead bismuth silicate glass system, Journal of Non-Crystalline Solids, vol. 500, pp. 460–467 (2018), DOI: 10.1016/j.jnoncrysol.2018.09.002.
- [34] Boiko O., Dielectric properties of metallic alloy FeCoZr-dielectric ceramic PZT nanostructures prepared by ion sputtering in vacuum conditions, Proceedings of 5th Global Conference on Polymer and Composite Materials (PCM 2018), Kitakyushu, Japan, vol. 369, 012016 (2018).
- [35] Zukowski P., Koltunowicz T. N., Boiko O., Bondariev V., Czarnacka K., Fedotova J. A., Fedotov A. K., Svito I. A., Impedance model of metal-dielectric nanocomposites produced by ion-beam sputtering in vacuum conditions and its experimental verification for thin films of (FeCoZr)𝑥(PZT)(100−𝑥) , Vacuum, vol. 120, pp. 37–43 (2015), DOI: 10.1016/j.vacuum.2015.04.035.
- [36] Zukowski P., Koltunowicz T.N., Bondariev V., Fedotov A.K., Fedotova J.A., Determining the percolation threshold for (FeCoZr)𝑥(CaF2)(100−𝑥) nanocomposites produced by pure argon ion-beam sputtering, Journal of Alloys and Compounds, vol. 683, pp. 62–66 (2016), DOI: 10.1016/j.jallcom.2016.05.070.
- [37] Koltunowicz T. N., Zukowski P., Czarnacka K., Bondariev V., Boiko O., Svito I. A., Fedotov A. K., Dielectric properties of nanocomposite (Cu)𝑥(SiO2)(100−𝑥) produced by ion-beam sputtering, Journal of Alloys and Compounds, vol. 652, pp. 444–449 (2015), DOI: 10.1016/j.jallcom.2015.08.240.
- [38] Boiko O., Granular metal-dielectric nanocomposites as an alternative to passive SMD, Przegląd Elektrotechniczny, vol. 1, no. 12, pp. 160–163 (2020), DOI: 10.15199/48.2020.12.32.
- [39] Radoń A., Łukowiec D., Kremzer M., Mikuła J., Włodarczyk P., Electrical Conduction Mechanism and Dielectric Properties of Spherical Shaped Fe3𝑂4 Nanoparticles Synthesized by Co-Precipitation Method, Materials, vol. 11, no. 5, 735 (2018), DOI: 10.3390/ma11050735.
- [40] Rashmi, Sailaja R. R. N., Madhu B. M., Analysis of Epoxy Nanocomposites Characteristics by Impedance Spectroscopy, Macromolecular Symposia, vol. 398, no. 1, 1900168 (2021), DOI: 10.1002/masy.201900168.
- [41] Hussain M.R., Khan Q., Khan A.A., Refaat S.S., Abu-Rub H., Dielectric Performance of Magneto-Nanofluids for Advancing Oil-Immersed Power Transformer, IEEE Access, vol. 8, pp. 163316–163328 (2020), DOI: 10.1109/ACCESS.2020.3021003.
- [42] Koutras K. N., Naxakis I. A., Antonelou A. E., Charalampakos V. P., Pyrgioti E. C., Yannopoulos S.N., Dielectric strength and stability of natural ester oil based TiO2 nanofluids, Journal of Molecular Liquids, vol. 316, 113901 (2020), DOI: 10.1016/j.molliq.2020.113901.
- [43] Zawrah M. F., Khattab R. M., Girgis L. G., El Daidamony H., Abdel Aziz R. E., Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications, HBRC Journal, vol. 12, no. 3, pp. 227–234 (2016), DOI: 10.1016/j.hbrcj.2014.12.001.
- [44] Shojaei S., Rostami-Tapeh-Esmaeil E., Mighri F., A review on key factors influencing the electrical conductivity of proton exchange membrane fuel cell composite bipolar plates, Polymers for Advanced Technologies, vol. 35, no. 2, e6301 (2024), DOI: 10.1002/pat.6301.
- [45] Saboktakin M. R., Maharramov A., Ramazanov M. A., Synthesis and Characterization of Superparamagnetic Polyaniline Nanocomposites as Conductive Shields, Journal of Elastomers & Plastics, vol. 43, no. 2, pp. 155–166 (2011), DOI: 10.1177/0095244310393929.
- [46] Wang T., Zhao W. X., Miao Y. K., Cui A. G., Gao C. H., Wang C., Yuan L. Y., Tian Z. N., Meng A.L., Li Z.J., Zhang M., Enhancing Defect-Induced Dipole Polarization Strategy of SiC@MoO3 Nanocomposite Towards Electromagnetic Wave Absorption, Nano-Micro Letters, vol. 16, no. 1, 273 (2024), DOI: 10.1007/s40820-024-01478-2.
- [47] Sahu G., Das M., Yadav M., Sahoo B. P., Tripathy J., Dielectric Relaxation Behavior of Silver Nanoparticles and Graphene Oxide Embedded Poly(vinyl alcohol) Nanocomposite Film: An Effect of Ionic Liquid and Temperature, Polymers, vol. 12, no. 2, 374 (2020), DOI: 10.3390/polym12020374.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ca09582-b2a8-4c57-9c26-5ea43ece3e09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.