PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Active diagnostic experimentation on wind turbine blades with vibration measurements and analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the key operational problems of wind turbosets, especially offshore, where vibrations are generated by rotor blades, as a consequence of erosive wear or icing. The primary causes of the imbalance of wind turbine rotors have been characterised, the observable symptoms of which include various forms of vibrations, transmitted from the turbine wheel to the bearing nodes of the power train components. Their identification was the result of an active diagnostic experiment, which actually entered the aerodynamic-mass imbalance of a turbine rotor into a wind power train, built as a small scale model. The recording of the observed monitoring parameters (vibration, aerodynamic, mechanical and electrical) made it possible to determine a set of symptoms (syndrome) of the deteriorated (entered) dynamic state of the entire wind turboset. This provides the basis for positive verification of the assumed concept and methodology of diagnostic testing, the constructed laboratory station and the measuring equipment used. For this reason, testing continued, taking into account the known and recognisable faults that most often occur during the operation of offshore wind turbosets. Transferring the results of this type of model research to full-size, real objects makes it possible to detect secondary (fatigue) damage to the elements transmitting torque from the wind turbine rotor to the generator early, especially the thrust bearings or gear wheel teeth.
Rocznik
Tom
Strony
126--134
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, Poland
  • Gdańsk University of Technology, Poland
Bibliografia
  • 1. Bekhti A, Guerri O, Rezoug T. Numerical simulation of fluid flow around free vibrating wind turbine airfoil. Proceedings of the International Conference on Numerical Analysis and Applied Mathematics, Rhodes, 1648(1), 850088, 2015. https://doi.org/10.1063/1.4913143.
  • 2. Buljan A. Offshore Wind Turbines in 2023. January 2, 2024. https://www.offshorewind.biz, accessed on 2024-05-10.
  • 3. Hansen MH. Improved modal dynamics of wind turbines to avoid stall-induced vibrations. Wind Energy, vol. 6, pp. 179-195, 2003. https://doi.org/10.1002/we.79.
  • 4. Hu WH, Thons S, Rohrmann RG, Said S. Vibration-based structural health monitoring of a wind turbine system. Part I: Resonance phenomenon. Engineering Structures vol. 89: pp. 260–272, 2015. https://doi.org/ 10.1016/j.engstruct.2014.12.034.
  • 5. Jureczko M, Pawlak M, Mezyk A. Optimisation of wind turbine blades. Journal of Materials Processing Technology, vol. 167, (2-3): pp. 463–471, 2005. https://doi.org/10.1016/j.jmatprotec.2005.06.055.
  • 6. Katsaprakakis DA, Nikos P, Ioannis N. A comprehensive analysis of wind turbine blade damage. Energies, vol. 14, (18), 5974, 2021. https://doi.org/.10.3390/en14185974.
  • 7. Lau BCP, Ma EWM, Pecht M. Review of offshore wind turbine failures and fault prognosis methods. Proceedings of 3rd Annual Prognostics and System Health Management Conference, PHM-2012, Beijing, China, 23-25 May 2012, 2012. https://doi.org/ 10.1109/PHM.2012.6228954.
  • 8. Letcher TM. Wind Energy Engineering. A Handbook for Onshore and Offshore Wind Turbines. Academic Press. Elsevier Inc. 2017.
  • 9. Liu Z., Zhang L. A review of failure modes, conditio monitoring and fault diagnosis methods for large-scale wind turbine bearings. Measurement, vol. 149, 107002, 2020. https://doi.org/ 10.1016/j.measurement.2019.107002.
  • 10. Marquez GFP, Tobias AM, Perez JMP, Papaelias M. Condition monitoring of wind turbines: Techniques and methods. Renewable Energy, vol. 46, pp. 169-178, 2012. https://doi.org/10.1016/j.renene.2012.03.003.
  • 11. Mcmillan D, Ault GW. Quantification of Condition Monitoring Benefit for Offshore Wind Turbines. Wind Engineering, vol. 31(4), pp. 267-285, 2007. https://doi.org/10.1260/030952407783123060.
  • 12. Passon P. Offshore Wind Turbine Foundation Design. Dissertation. Technical University of Denmark, Department of Wind Energy, 2015.
  • 13. Sellami T et al. Modal and harmonic analysis of threedimensional wind turbine models. Wind engineering, vol. 40, (6), pp. 518-527, 2016a. https://doi.org/10.1177/0309524X16671093.
  • 14. Sellami T. et al. Original numerical analysis of wind turbine vibration. The 7th International Renewable Energy Congress, Hammamet, Tunisie, IREC 2016, 22-24 March 2016, 2016b.
  • 15. Spinato F. The Reliability of Wind Turbines. Dissertation, Durham University, UK, 2008.
  • 16. Walford C. Wind Turbine Reliability: Understanding and Minimizing Wind Turbine Operation and Maintenance Costs. Sandia National Laboratories, Rep. SAND-2006-1100. 2006. https://doi.org/10.2172/882048.
  • 17. Wu B, Lang Y, Zargari N, Kouro S. Power Conversion and Control of Wind Energy. John Wiley & Sons, INC., Publication, 2011. https://doi.org/10.1002/9781118029008.
  • 18. Zhu C, Li Y. Stability Control and Reliable Performance of Wind Turbines. Chapter 9: Reliability Analysis of Wind Turbines. Edited by Kenneth Eloghene Okedu, IntechOpen, 2018. https://doi.org/ 10.5772/intechopen.74859.
  • 19. ISO 10816-21:2015 Mechanical vibration - Evaluation of machine vibration by measurements on non-rotating parts. Part 21: Horizontal axis wind turbines with gearbox, 2015.
  • 20. https://elektrykapradnietyka.com. Offshore wind turbine blades after 2 years of service in the North Sea, accessed on 2024-05-10.
  • 21. https://benetech-poland.pl/anemometry-wiatromierze/62-termo-anemometr-hot-wire-benetech-gm-8903-5903738810338.html, accessed on 2024-05-10.
  • 22. https://svantek.com/products/svan-958a-four-channelssound-vibration-meter/, accessed on 2024-05-14.
  • 23. https://svantek.com/accessories/sv-85-triaxial-outdooraccelerometer-100-mv-g-connector-m12-m6-mountinghole/, accessed on 2024-05-14.
  • 24. http://www.momentomierze.pl/momentomierze.html, accessed on 2024-06-10.
  • 25. https://www.egsystem-sklep.pl/multimetr-bm857s-trmsacad-brymen-p-4779.html, accessed on 2024-05-10.
  • 26. https://svantek.com/softwares/svanpc-software/, accessed on 2024-05-14.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c9e63ba-9813-44ae-8a44-1c015e96f9c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.