PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Water ages in thermal system of the Podhale Basin (Inner Carpathians, southern Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Groundwater quality sustainability : XXXVIII IAH Congress in Kraków
Języki publikacji
EN
Abstrakty
EN
Karstified carbonates which outcrop in the Tatras, Inner Carpathians, southern Poland, and dip to the north under the flysch sediments of the Podhale Basin, represent the largest known renewable reservoir of thermal waters in the country, with temperatures up to about 80°C. Measurements of He excess, Ne and Ar unexpectedly revealed the existence of glacial age waters in the northeastern part of the basin, and late Holocene age waters in other parts. The noble gas data are shown to be in accordance with newly interpreted earlier long-term records of 3H, δ18O and δ2H in waters of the karstic springs, and with available determinations of 3H, δ18O, δ2H, 14C and δ13C in cold and thermal well waters.
Rocznik
Strony
7--17
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Polish Geological Institute – National Reasearch Istitute, Carpathian Branch, Skrzatów 1, 31-560 Kraków, Poland
autor
  • Faculty of Physics and Applied Computer Sciences, AGH – University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
autor
  • Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
autor
  • Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
autor
  • Polish Geological Institute – National Reasearch Istitute, Carpathian Branch, Skrzatów 1, 31-560 Kraków, Poland
Bibliografia
  • 1. AESCHBACH-HERTIG W., PEETERS F., BEYERLE U., KIPFER R., 1999 — Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour. Res., 35: 2779–2792.
  • 2. ANDREWS J.N., LEE D.J., 1979 — Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and paleoclimatic trends. J. Hydrol., 41: 233–252.
  • 3. BAC-MOSZASZWILI M., BURCHART J., GŁAZEK J., IWANOW A., JAROSZEWSKI W., KOTAŃSKI Z., LEFELD J., MASTELA L., ZIOMKOWSKI W., RONIEWICZ P., SKUPIŃSKI A., WESTWALEWICZ-MOGILSKA E., 1979 — Geological map of the Polish Tatra Mountains 1:30 000. Wyd. Geol., Warszawa.
  • 4. CHOWANIEC J., 2009 — Hydrogeology study of the western part of the Polish Carpathians. Biul. Państw. Inst. Geol., 434 [in Polish].
  • 5. COOK G.P., HERCZEG A.L., 2000 — Environmental tracers in subsurface hydrology. Kluwer Acad. Publ., Boston.
  • 6. HEATON T.H.E., VOGEL J.C., 1981 — ‘Excess air’ in groundwater. J. Hydrol., 50: 201–216.
  • 7. KONCEK M., ORLICZ M., 1974 — Temperature measurements (in Slovakian). In: Klima Tatier (ed. Koncek M. et al.). Slovenska Akademia Vied., Bratislava.
  • 8. LASA J., MOCHALSKI P., ŁOKAS E., 2002 — Determination of argon in air and water. Chem. Anal., 47: 839–845.
  • 9. LASA J., MOCHALSKI P., PUSZ J., 2004 — Evaluation of a pulse-discharge helium detector for the determination of neon concentrations by gas chromatography. J. Chrom., A 1035: 261–264.
  • 10. MAŁECKA D., NOWICKI Z., 2002 — Isotope composition of groundwater in Tatras Mountains and Podhale Basin. Biul. Państw. Inst. Geol., 404: 67–83 [in Polish].
  • 11. MAŁOSZEWSKI P., ZUBER A., 1985 — On the theory of tracer experiments in fissured rocks with a porous matrix. J. Hydrol., 79: 333–358.
  • 12. MAŁOSZEWSKI P., ZUBER A., 1991 — Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate rocks. Water Resour. Res,. 27: 1937–1945.
  • 13. MAŁOSZEWSKI P., ZUBER A., 1996 — Lumped parameter models for the interpretation of environmental tracer data. In: Manual on mathematical models in isotope hydrology: 9–58. IAEA-TECDOC-910, IAEA, Vienna.
  • 14. MANNING A.H., SOLOMON D.K., 2003 — Using noble gases to investigate mountain-front recharge. J. Hydrol., 275: 194–207.
  • 15. MAZOR E., 1972 — Paleotemperatures and other hydrological parameters deduced from noble gases dissolved in groundwaters, Jordan Rift Valley, Israel. Geochim. Cosmochim. Acta, 36: 1321–1336.
  • 16. MOCHALSKI P., ŚLIWKA I., 2008 — Simultaneous determination of Ne, Ar, CFC-11, CFC-12 and SF6 in groundwater samples by gas chromatography. Chem. Anal., 53: 651–658.
  • 17. MOCHALSKI P., LASA J., ŚLIWKA I., 2006 — Simultaneous determination of Ne, Ar, and N2 in groundwater by gas chromatography. Chem. Anal., 51: 825–831.
  • 18. MOŚCICKI W.J., 2008 — Temperature regime on northern slopes of Hala Gąsienicowa in the Polish Tatras Mountains and its relations to permafrost. Stud Geomorph. Carpatho-Balcan., 42: 23–40.
  • 19. PORCELLI D., BALLENTINE C.J., WIELER R. (eds.), 2002 — Noble gases in geochemistry and cosmochemistry. Rev. Miner. Geochem., 47, Mineral. Soc. America, Washington DC.
  • 20. PUSZ J., LASA J., ŚLIWKA I., 2007 — Gas chromatography metod for measurement of helium in groundwaters. In: Współczesne problemy hydrogeologii, 13, 2: 303–311 (eds. A. Szczepański et al.). AGH, Kraków [in Polish].
  • 21. STUTE M., SCHLOSSER P., 2000 — Atmospheric noble gases. In: Environmental tracers in subsurface hydrology (eds. P.G. Cook, A.L. Herczeg): 349–378 . Kluwer Acad. Publ., Boston.
  • 22. ŚLIWKA I., LASA J., ZUBER A., OPOKA M., JACKOWICZ-KORCZYŃSKI M., 2004 — Headspace extraction method for simultaneous determination of SF6, CCl3F, CCl2F2 and CCl2FCClF2 in water. Chem. Anal., 49: 535–549.
  • 23. TORGERSEN T., CLARKE W.B., 1985 — Groundwater dating with helium isotopes. I. An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim. Cosmochim. Acta, 49: 1211–1218.
  • 24. TORGERSEN T., IVEY G.N., 1985 — Helium accumulation in groundwater II: A model for the crustal 4He degassing flux. Geochim. Cosmochim. Acta, 49: 2425–2452.
  • 25. ZUBER A., MOTYKA J., 1994 — Matrix porosity as the most important parameter of fissured rocks for solute transport at large scales. J. Hydrol., 158: 19–46.
  • 26. ZUBER A., WEISE S.M., OSENBRÜCK K., GRABCZAK J., CIĘŻKOWSKI W., 1995 — Age and recharge area of thermal waters in Lądek Spa (Sudeten, Poland) deduced from environmental isotope and noble gas data. J. Hydrol., 167: 327–349.
  • 27. ZUBER A., WEISE S.M., OSENBRÜCK K., MATEŃKO T., 1997 — Origin and age of saline waters in Busko Spa (southern Poland) determined by isotope, noble gas, and hydrochemical methods: Evidence of interglacial and pre-Quaternary recharge. Appl. Geochem., 12: 643–660.
  • 28. ZUBER A., WEISE S.M., OSENBRÜCK K., PAJNOWSKA H., GRABCZAK J., 2000 — Age and recharge pattern of the Mazovian basin (Poland) as indicated by environmental tracers. J. Hydrol., 233: 174–188.
  • 29. ZUBER A., WEISE S.M., MOTYKA J., OSENBRÜCK K., RÓŻAŃSKI K., 2004 — Age and flow pattern of groundwater in a Jurassic limestone aquifer and related Tertiary sands derived from isotope, noble gas and chemical data. J. Hydrol., 286: 87–112.
  • 30. ZUBER A., MAŁECKI J.J., DULIŃSKI M., 2008 — Groundwater ages and altitudes of recharge areas in the Polish Tatras Mts. As determined from 3H, 18O and 2H data. Geol. Quart., 52: 71–80.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c9e3f4d-9c1f-4fce-b241-0a053255a439
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.