PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positive solutions for nonparametric anisotropic singular solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider an elliptic equation driven by a nonlinear, nonhomogeneous differential operator with nonstandard growth. The reaction has the combined effects of a singular term and of a “superlinear” perturbation. There is no parameter in the problem. Using variational tools and truncation and comparison techniques, we show the existence of at least two positive smooth solutions.
Rocznik
Strony
409--423
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
  • University of Craiova, Department of Mathematics, 200585 Craiova, Romania
  • AGH University of Krakow, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • University of Craiova, Department of Mathematics, 200585 Craiova, Romania
autor
  • Harbin Engineering University, College of Mathematical Sciences, Harbin 150001, People’s Republic of China
  • University of Craiova, Department of Mathematics, 200585 Craiova, Romania
Bibliografia
  • [1] Y. Bai, N.S. Papageorgiou, S. Zeng, A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian, Math. Z. 300 (2022), 325–345.
  • [2] S. Byun, E. Ko, Global C1,α regularity and existence of multiple solutions for singular p(x)-Laplacian equations, Calc. Var. Partial Differential Equations 56 (2017), Article no. 76.
  • [3] D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer Science & Business Media, 2013.
  • [4] L. Diening, P. Harjulehto, P. Hästo, M. Ruzička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer, Heidelberg, 2011.
  • [5] X. Fan, Global C1,α regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007), no. 2, 397–417.
  • [6] X. Fan, D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. 36 (1999), 295–318.
  • [7] L. Gasinski, N.S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Ratom, Fl, 2006.
  • [8] U. Guarnotta, S.A. Marano, A. Moussaoui, Singular quasilinear convective elliptic systems in RN, Adv. Nonlinear Anal. 11 (2022), no. 1, 741–756.
  • [9] P. Harjulehto, P. Hästo, M. Koskenoja, Hardy’s inequality in a variable exponent Sobolev space, Georgian Math. J. 12 (2005), 431–442.
  • [10] N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), no. 2, 257–278.
  • [11] N.S. Papageorgiou, G. Smyrlis, A bifurcation-type theorem for singular nonlinear elliptic equations, Methods Appl. Anal. 22 (2015), 147–170.
  • [12] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis – Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019.
  • [13] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Anisotropic equations with indefinite potential and competing nonlinearities, Nonlinear Anal. 201 (2020), Article no. 111861.
  • [14] N.S. Papageorgiou, V.D. Rădulescu, Y. Zhang, Anisotropic singular double phase Dirichlet problems, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), 4465–4502.
  • [15] K. Saoudi, A. Ghanmi, A multiplicity results for a singular equation involving the p(x)-Laplace operator, Complex Var. Elliptic Equ. 62 (2017), no. 5, 695–725.
  • [16] P. Takač, J. Giacomoni, A p(x)-Laplacian extension of the Díaz–Saa inequality and some applications, Proc. Roy. Soc. Edinburgh Sect. A 150A (2020), 205–232.
  • [17] S. Zeng, N.S. Papageorgiou, Positive solutions for (p, q)-equations with convection and a sign-changing reaction, Adv. Nonlinear Anal. 11 (2022), no. 1, 40–57.
  • [18] Q. Zhang, A strong maximum principle for differential equations with nonstandard p(x)-growth conditions, J. Math. Anal. Appl. 312 (2005), 24–32.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c9753ef-e881-4439-8186-edf2c9a6c700
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.