Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider an elliptic equation driven by a nonlinear, nonhomogeneous differential operator with nonstandard growth. The reaction has the combined effects of a singular term and of a “superlinear” perturbation. There is no parameter in the problem. Using variational tools and truncation and comparison techniques, we show the existence of at least two positive smooth solutions.
Czasopismo
Rocznik
Tom
Strony
409--423
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
- University of Craiova, Department of Mathematics, 200585 Craiova, Romania
autor
- AGH University of Krakow, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
- University of Craiova, Department of Mathematics, 200585 Craiova, Romania
autor
- Harbin Engineering University, College of Mathematical Sciences, Harbin 150001, People’s Republic of China
- University of Craiova, Department of Mathematics, 200585 Craiova, Romania
Bibliografia
- [1] Y. Bai, N.S. Papageorgiou, S. Zeng, A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian, Math. Z. 300 (2022), 325–345.
- [2] S. Byun, E. Ko, Global C1,α regularity and existence of multiple solutions for singular p(x)-Laplacian equations, Calc. Var. Partial Differential Equations 56 (2017), Article no. 76.
- [3] D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer Science & Business Media, 2013.
- [4] L. Diening, P. Harjulehto, P. Hästo, M. Ruzička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer, Heidelberg, 2011.
- [5] X. Fan, Global C1,α regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007), no. 2, 397–417.
- [6] X. Fan, D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. 36 (1999), 295–318.
- [7] L. Gasinski, N.S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Ratom, Fl, 2006.
- [8] U. Guarnotta, S.A. Marano, A. Moussaoui, Singular quasilinear convective elliptic systems in RN, Adv. Nonlinear Anal. 11 (2022), no. 1, 741–756.
- [9] P. Harjulehto, P. Hästo, M. Koskenoja, Hardy’s inequality in a variable exponent Sobolev space, Georgian Math. J. 12 (2005), 431–442.
- [10] N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), no. 2, 257–278.
- [11] N.S. Papageorgiou, G. Smyrlis, A bifurcation-type theorem for singular nonlinear elliptic equations, Methods Appl. Anal. 22 (2015), 147–170.
- [12] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis – Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019.
- [13] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Anisotropic equations with indefinite potential and competing nonlinearities, Nonlinear Anal. 201 (2020), Article no. 111861.
- [14] N.S. Papageorgiou, V.D. Rădulescu, Y. Zhang, Anisotropic singular double phase Dirichlet problems, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), 4465–4502.
- [15] K. Saoudi, A. Ghanmi, A multiplicity results for a singular equation involving the p(x)-Laplace operator, Complex Var. Elliptic Equ. 62 (2017), no. 5, 695–725.
- [16] P. Takač, J. Giacomoni, A p(x)-Laplacian extension of the Díaz–Saa inequality and some applications, Proc. Roy. Soc. Edinburgh Sect. A 150A (2020), 205–232.
- [17] S. Zeng, N.S. Papageorgiou, Positive solutions for (p, q)-equations with convection and a sign-changing reaction, Adv. Nonlinear Anal. 11 (2022), no. 1, 40–57.
- [18] Q. Zhang, A strong maximum principle for differential equations with nonstandard p(x)-growth conditions, J. Math. Anal. Appl. 312 (2005), 24–32.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c9753ef-e881-4439-8186-edf2c9a6c700