Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A technique is developed to establish a new oscillation criterion for a first-order linear difference equation with several delays and non-negative coefficients. Our result improves recent oscillation criteria and covers the cases of monotone and non-monotone delays. Moreover, the paper is concluded with an illustrative example to show the applicability and strength of our result.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
789--801
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Qassim University, College of Science and Arts, Department of Mathematics, Al-Badaya, Buraidah 51951, Saudi Arabia
- Damietta University, Faculty of Science, Department of Mathematics, New Damietta 34517, Egypt
autor
- Damietta University, Faculty of Science, Department of Mathematics, New Damietta 34517, Egypt
autor
- University of Ioannina, Department of Mathematics, 45110 Ioannina, Greece
autor
- University of Ioannina, Department of Mathematics, 45110 Ioannina, Greece
Bibliografia
- [1] E.R. Attia, B.M. El-Matary, New aspects for the oscillation of first-order difference equations with deviating arguments, Opuscula Math. 42 (2022), 393–413.
- [2] V. Benekas, A. Kashkynbayev, A survey on sharp oscillation conditions for delay difference equations, J. Adv. App. Comput. Math. 8 (2021), 117–128.
- [3] V. Benekas, Á. Garab, A. Kashkynbayev, I.P. Stavroulakis, Oscillation criteria for linear difference equations with several variable delays, Opuscula Math. 41 (2021), 613–627.
- [4] L. Berezansky, E. Braverman, On existence of positive solutions for linear difference equations with several delays, Adv. Dyn. Syst. Appl. 1 (2006), 29–47.
- [5] G.E. Chatzarakis, I. Jadlovská, Difference equations with several non-monotone deviating arguments: Iterative oscillation tests, Dynamic Systems and Applications 27 (2018), 271–298.
- [6] G.E. Chatzarakis, I. Jadlovská, Iterative oscillation criteria in deviating difference equations, Mediterr. J. Math. 17 (2020), Article no. 192.
- [7] G.E. Chatzarakis, M. Pašić, Improved iterative oscillation tests in difference equations with several arguments, J. Difference Equ. Appl. 25 (2019), 64–83.
- [8] G.E. Chatzarakis, L. Horvat-Dmitrović, M. Pašić, Oscillation tests for difference equations with several non-monotone deviating arguments, Math. Slovaca 68 (2018), 1083–1096.
- [9] G.E. Chatzarakis, R. Koplatadze, I.P. Stavroulakis, Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal. 68 (2008), 994–1005.
- [10] G.E. Chatzarakis, T. Kusano, I.P. Stavroulakis, Oscillation conditions for difference equations with several variable arguments, Math. Bohem. 140 (2015), 291–311.
- [11] G.E. Chatzarakis, J. Manojlovic, S. Pinelas, I.P. Stavroulakis, Oscillation criteria of difference equations with several deviating arguments, Yokohama Math. J. 60 (2014), 13–31.
- [12] G.E. Chatzarakis, Ch.G. Philos, I.P. Stavroulakis, An oscillation criterion for linear difference equations with general delay argument, Portugal. Math. 66 (2009), 513–533.
- [13] K.M. Chudinov, Sharp explicit oscillation conditions for difference equations with several delays, Georgian Math. J. 28 (2021), 207–218.
- [14] N. Kılıç, Ö. Öcalan, Oscillation criteria for difference equations with several arguments, Int. J. Difference Equ. 15 (2020), 109–119.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c948096-9458-4fc0-b50a-88f723e6091f