PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of Lueders bands using regularized large strain elasto-plasticity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the numerical simulation of an instability phenomenon called Lueders bands with two regularized material models: viscoplasticity and gradient-enhanced plasticity. The models are based on large strain kinematics and temperature-dependence is incorporated. The Huber–Mises–Hencky yield condition and multi-branch hardening are employed. After a brief presentation of the constitutive description, test computations are performed using AceGen and AceFEM symbolic packages for Wolfram Mathematica. The first benchmark is a rectangular tensile plate in plane strain isothermal conditions. For the viscoplastic model, simulation results for different values of viscosity, loading duration and enforced displacement are compared. For the gradient model different internal lengths are used. Mesh sensitivity of the results and the influence of boundary conditions are also examined. Next to the Lueders-type response to a softening-hardening yield strength function, an additional softening stage leading to failure is also considered. The second example concerns a bone-shape sample under tension, for which, next to mesh sensitivity and the effect of regularization, the influence of heat conduction on simulation results is evaluated.
Rocznik
Strony
83--117
Opis fizyczny
Bibliogr. 48 poz., rys. kolor.
Twórcy
autor
  • Chair for Computational Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow
autor
  • Chair for Computational Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow
autor
  • Chair for Computational Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow
Bibliografia
  • 1. A.H. Cottrell, The Mechanical Properties of Matter, John Wiley & Sons, New York, 1964.
  • 2. Y. Estrin, L.P. Kubin, Spatial coupling and propagative plastic instabilities, [in:] H.-B. Mühlhaus [ed.], Continuum Models for Materials with Microstructure, John Wiley & Sons, Chichester, 1995, 395–450.
  • 3. J.F. Hallai, S. Kyriakides, Underlying material response for Lüders-like instabilities, International Journal of Plasticity, 47, 1–12, 2013.
  • 4. A. Needleman, Material rate dependence and mesh sensitivity in localization problems, Computer Methods in Appllied Mechanics and Engineering, 67, 69–86, 1988.
  • 5. W.M. Wang, L.J. Sluys, R. de Borst, Viscoplasticity for instabilities due to strain softening and strain-rate softening, International Journal for Numerical Methods in Engineering, 40, 20, 3839–3864, 1997.
  • 6. T. Łodygowski, Theoretical and numerical aspects of plastic strain localization, Technical Report Monography, 312, Poznan University of Technology, Poznan, 1996.
  • 7. R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, J.H.P. de Vree, Gradient enhanced damage for quasi-brittle materials, International Journal for Numerical Methods in Engineering, 39, 3391–3403, 1996.
  • 8. M.G.D. Geers, Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework, Computer Methods in Applied Mechanics and Engineering, 193, 3377–3401, 2004.
  • 9. J. LeMonds, A. Needleman, Finite element analyses of shear localization in rate and temperature dependent solids, Mechanics of Materials, 5, 339–361, 1986.
  • 10. A. Needleman, Continuum mechanics studies of plastic instabilities, Revue de Physique Appliquee, 23, 585–593, 1988.
  • 11. B. Dodd, Y. Bai, Introduction to Adiabatic Shear Localization, Imperial College Press, London, revised edition, 2015.
  • 12. M.K. Duszek, P. Perzyna, E. Stein, Adiabatic shear band localization in elastic-plastic damaged solids, International Journal of Plasticity, 8, 4, 361–384, 1992.
  • 13. A. Molinari, Adiabatic shear banding as an example of viscoplastic flow instability, [in:] G.A. Maugin, R. Drouot, and F. Sidoroff [eds.], Continuum Thermomechanics Solid Mechanics and Its Applications, 76, 313–330, Springer, Dordrecht, 2000.
  • 14. H. Louche, A. Chrysochoos, Thermal and dissipative effects accompanying Lüders band propagation, Materials Science and Engineering, A, 307, 12, 15–22, 2001.
  • 15. J. Zhang, Y. Jiang, Lüders bands propagation of 1045 steel under multiaxial stress state, International Journal of Plasticity, 21, 3, 651–670, 2005.
  • 16. V.I. Danilov, V.V. Gorbatenko, L.B. Zuev, On the kinetics of mobile Chernov–Lüders band fronts, AIP Conference Proceedings, 1783, 1, 020034, 2016.
  • 17. H.B. Sun, F. Yoshida, X. Ma, T. Kamei, M. Ohmori, Finite element simulation on the propagation of Lüders band and effect of stress concentration, Materials Letters, 57, 21, 3206–3210, 2003.
  • 18. S. Kyriakides, A. Ok, E. Corona, Localization and propagation of curvature under pure bending in steel tubes with Lüders bands, International Journal of Solids and Structures, 45, 10, 3074–3087, 2008.
  • 19. M. Mazière, C. Luis, A. Marais, S. Forest, M. Gaspèrini, Experimental and numerical analysis of the Lüders phenomenon in simple shear, International Journal of Solids and Structures, 106–107, 305–314, 2017.
  • 20. M. Rezaee-Hajidehi, S. Stupkiewicz, Gradient-enhanced model and its micromorphic regularization for simulation of Lüders-like bands in shape memory alloys, International Journal of Solids and Structures, 135, 208–218, 2018.
  • 21. W.M. Wang, Stationary and propagative instabilities in metals – a computational point of view, Ph.D. dissertation, Delft University of Technology, Delft, 1997.
  • 22. L.J. Sluys, W.-M. Wang, Macroscopic modelling of stationary and propagative instabilities, [in:] de Borst and van der Giessen, Material Instabilities in Solids, John Wiley & Sons, Chichester, pp. 489–505, 1998.
  • 23. R. de Borst, Some recent issues in computational failure mechanics, International Journal for Numerical Methods in Engineering, 52, 63–95, 2001.
  • 24. D. Bigoni, Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability, Cambridge University Press, Cambridge, 2012.
  • 25. M. Mazière, S. Forest, Strain gradient plasticity modeling and finite element simulation of Lüders band formation and propagation, Continuum Mechanics and Thermodynamics, 27, 1–2, 83–104, 2015.
  • 26. B. Wcisło, J. Pamin, Local and non-local thermomechanical modeling of elastic-plastic materials undergoing large strains, International Journal of Numerical Methods in Engineering, 65, 102–124, 2017.
  • 27. B. Wcisło, J. Pamin, K. Kowalczyk-Gajewska, Gradient-enhanced damage model for large deformations of elastic-plastic materials, Archives of Mechanics, 65, 5, 407–428, 2013.
  • 28. J. Pamin, B. Wcisło, K. Kowalczyk-Gajewska, Gradient-enhanced large strain thermoplasticity with automatic linearization and localization simulations, Journal of Mechanics of Materials and Structures, 12, 1, 123–146, 2017.
  • 29. J. Korelc, Automation of primal and sensitivity analysis of transient coupled problems, Computational Mechanics, 44, 631–649, 2009.
  • 30. J. Korelc, Automation of the finite element method, [in:] P. Wriggers [ed.], Nonlinear Finite Element Methods, 483–508, Springer-Verlag, Berlin Heidelberg, 2008.
  • 31. J. C. Simo, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part 1. Continuum formulation, Computer Methods in Applied Mechanics and Engineering, 66, 199–219, 1988.
  • 32. P.A. Wriggers, C. Miehe, M. Kleiber, J.C. Simo, On the coupled thermomechnical treatment of necking problems via finite element methods, International Journal of Numerical Methods in Engineering, 33, 869–883, 1992.
  • 33. E.H. Lee, Elastic plastic deformation at finite strain, ASME Transactions Journal of Applied Mechanics, 36, 1–6, 1969.
  • 34. E.H. Lee, D.T. Liu, Finite-strain elastic-plastic theory with application to plane-wave analysis, Journal of Applied Physics, 38, 19–27, 1967.
  • 35. S.C.H. Lu, K.S. Pister, Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids, International Journal of Solids and Structures, 11, 927–934, 1975.
  • 36. M. Ristinmaa, M.Wallin, N.S. Ottosen, Thermodynamic format and heat generation of isotropic hardening plasticity, Acta Mechanica, 194, 103–121, 2007.
  • 37. J.C. Simo, C. Miehe, Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Computer Methods in Applied Mechanics and Engineering, 98, 1, 41–104, 1992.
  • 38. F. Oka, H.-B. Mühlhaus, A. Yashima, K. Sawada, Quasi-static and dynamic characteristics of strain gradient dependent non-local constitutive models, [in:] de Borst and van der Giessen, Isntabilities in Solids, John Wiley & Sons, Chichester, 387–404, 1998.
  • 39. S. Okazawa, Structural bifurcation for ductile necking localization, International Journal of Nonlinear Mechanics, 45, 35–41, 2009.
  • 40. J.C. Simo, Numerical analysis and simulation of plasticity, [in:] P.G. Ciarlet and J.L. Lions [eds.], Handbook of Numerical Analysis. Numerical methods for solids (Part 3), vol. VI, pages 183–499, Elsevier Science, Boca Raton, 1998.
  • 41. C. Miehe, Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation, Computer Methods in Applied Mechanics and Engineering, 120, 243–269, 1995.
  • 42. G.I. Taylor, H. Quinney, The latent energy remaining in a metal after cold working, Proceedings of the Royal Society of London, Series A, 143, 307–326, 1934.
  • 43. B. Wcisło, Simulations of thermal softening in large strain thermoplasticity with degradation, Engineering Transactions, 4, 64, 563–572, 2016.
  • 44. Z.P. Bažant, M. Jirásek, Nonlocal integral formulations and damage: Survey of progress, ASCE Journal of Engineering Mechanics, 128, 11, 1119–1149, 2002.
  • 45. B. Wcisło, Large Strain Thermomechanical Material Models Accounting for Inelasticity, Instabilities and Gradient Enhancement, Ph.D. dissertation, Cracow University of Technology, Cracow, 2017.
  • 46. E.A. de Souza Neto, D. Peric, D.R.J. Owen, Computational Methods for Plasticity. Theory and Applications, John Wiley & Sons, Chichester, UK, 2008.
  • 47. L.J. Sluys, Wave Propagation, Localization and Dispersion in Softening Solids, Ph.D. dissertation, Delft University of Technology, Delft, 1992.
  • 48. R. de Borst, E. van der Giessen [eds.], Material Instabilities in Solids, IUTAM, John Wiley & Sons, Chichester, 1998.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c944a1c-e99e-42d0-95c1-a90b23af84e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.