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This paper deals with the numerical simulation of an instability phenomenon
called Lueders bands with two regularized material models: viscoplasticity and
gradient-enhanced plasticity. The models are based on large strain kinematics and
temperature-dependence is incorporated. The Huber–Mises–Hencky yield condition
and multi-branch hardening are employed. After a brief presentation of the constitu-
tive description, test computations are performed using AceGen and AceFEM sym-
bolic packages for Wolfram Mathematica. The first benchmark is a rectangular tensile
plate in plane strain isothermal conditions. For the viscoplastic model, simulation re-
sults for different values of viscosity, loading duration and enforced displacement are
compared. For the gradient model different internal lengths are used. Mesh sensitiv-
ity of the results and the influence of boundary conditions are also examined. Next
to the Lueders-type response to a softening-hardening yield strength function, an
additional softening stage leading to failure is also considered. The second example
concerns a bone-shape sample under tension, for which, next to mesh sensitivity and
the effect of regularization, the influence of heat conduction on simulation results is
evaluated.
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1. Introduction

In this paper two different large strain models, viscoplasticity and
gradient-enhanced plasticity are used to simulate a propagative instability phe-
nomenon called Lueders bands. Lueders bands occur in metallic materials, e.g.
in low-carbon steel, around room temperature. The phenomenon is described
in several publications, see for instance [1–3] and references therein. Although
Lueders-like instabilities usually have a transient character, their understanding
is important, since as other instability phenomena they are related to degrada-
tion of the material properties and/or structural performance.

In many metals and alloys a softening stage (yield a stress drop) follows the
initiation of the plastic process. The observed process continues with a plas-
tic flow plateau and then hardening occurs. Considering the current tangent
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stiffness, it is negative, zero and positive in the three stages, respectively. As
explained by Cottrell [1], this plastic process is related to stress wave prop-
agation, the front part of the plastic wave slows down while the later part still
travels to form a sharp plastic front, called the Lueders front. It can be viewed
as a strain discontinuity, although it rather has a non-zero width.

The phenomenon is treated here as initiated by material softening although
geometrical softening due to large deformations is included in the analysis. Sim-
ulation of instabilities and localized deformation can involve pathological dis-
cretization sensitivity, hence a regularization of the constitutive description is
necessary. Strain rate sensitivity is known to increase ductility and stabilize the
response of plastic materials, hence viscoplasticity is the main constitutive frame-
work employed in [4–6]. An alternative regularization is provided by a gradient-
type enhancement [7, 8].

However, thermal softening which occurs in majority of elasto-plastic mate-
rials with a temperature increase can also trigger an unstable behaviour, and
heat conduction can influence evolving strain localization [9, 10]. Therefore, the
models employed in this study are formulated as temperature-dependent. It is
mentioned in this context that high strain rates can induce a different instability
phenomenon, not considered here: multiple localization zones called adiabatic
shear bands, cf. [11–13].

The reader interested in the microstructural origins of Lueders bands (related
to travelling atoms and dislocations) are referred to [2] and references to the
works of Cottrell et al. as well as Hall et al. given there. The Lueders-type
phenomena were analyzed experimentally using low-carbon steel in [14–16]. Both
experiments and numerical modelling were performed in [17–19]. In [17] a vis-
coplastic model was employed, in [19] a gradient plasticity model was applied.
Moreover, in [20] Lueders bands have been simulated in shape memory alloys
using a micromorphic gradient-enhanced model.

To set the stage broader, we recall the classification of instability types pro-
posed in [2] and discussed in [21–23] assuming linear kinematics. For simplic-
ity we also limit here this brief presentation to a rate-dependent isothermal
plasticity model (gradient term is additionally included in [21–23]). Consider
the equation of wave propagation in a bar (dot over a symbol denotes time
derivative):

(1.1)
∂σ̇

∂x
= ρ

∂2v

∂t2
, v = u̇, ε̇ =

∂v

∂x
.

Here σ is the stress, ρ is the density, u denotes the displacement and thus v is
the velocity. For elastic-plastic flow we have the following decomposition:

(1.2) ε̇ = ε̇e + ε̇p, σ̇ = Eε̇e
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where E is Young’s modulus. The analysis is expanded to viscoplasticity:

(1.3) σ = σ(εp, ε̇p), σ̇ = Hε̇p + Sε̈p, H =
∂σ

∂εp
, S =

∂σ

∂ε̇p

denoting the hardening modulus by H and the strain-rate dependence factor
by S. When the above equations are substituted into Eq. (1.1) one obtains the
equation of dynamics as follows:

(1.4) H∇̂ε̇p + S∇̂ε̈p = ρ
∂2ε̇p

∂t2
, ∇̂ =

∂2

∂x2
− ρ

E

∂2

∂t2
.

The stability of deformation can be examined by perturbing the uniform strain
with

(1.5) δε̇p = δε0e
ikx+ωt

where k is the wave number and ω is the eigenvalue. Upon substitution of the
perturbation into Eq. (1.4) one obtains the equation:

(1.6) ω3 + aω2 + bω + c = 0, a =
E +H

S
, b =

E

ρ
k2, c =

E

ρ
k2
H

S
.

When one of the Routh–Hurwitz conditions a > 0, c > 0, ab − c > 0 is not
satisfied, the function ω(k) has a positive real part, the perturbation grows and
the deformation is unstable. One can then distinguish:

1. Instability of type H for H < 0, S > 0 (stationary, called in [22] static).
This involves softening in relation σ(ε) (strain softening), which triggers
stationary localization bands. In fact, such bands can also be induced by
a non-symmetric material tangent operator, as commonly happens in geo-
materials, cf. [24].

2. Instability of type S for H > 0, S < 0 (called in [22] propagative).
This involves softening in relation σ(ε̇) (strain rate softening) and produces
a discontinuous plastic process which can have the form of Portevin–Le
Chatelier bands (PLC effect).

However, considering the yield strength function and referring to a typical plastic
response of metal specimens in tension, sketched in Fig. 1, after passing an upper
yield limit σU the softening response occurs down to a lower yield limit σL, while
a stationary shear band is formed. The softening stage is followed by an ideal
plasticity stage and hardening (H ≥ 0). The shear band then travels through
the specimen, so the Lueders-type response has a propagative nature, although
it is not a dynamic phenomenon. Therefore, the authors of this paper are of the
opinion that the Lueders-type response forms an additional class of instabilities,
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say type L (H evolves from softening to hardening while S > 0). It is men-
tioned that the authors of [2] distinguish additionally type T instabilities caused
by thermal softening, but they can be classified in the broad group of type H
instabilities.

As noted in [3], the process is described by so-called Lueders parameters σU ,
σL and εL (so-called Lueders strain) which depend on material composition and
microstructure, temperature and strain rate. The last two aspects are considered
in this study.

It was noticed for instance in [19, 25] that the simulation of type L of local-
ization phenomenon requires regularized continuum models, therefore we employ
two such models in this paper: the first one contains viscous terms and the second
one is enhanced by spatial gradients. The two enhancements should guarantee
not only mesh-insensitive simulation results, but also a finite (non-zero) width of
propagating Lueders bands. To check the influence of temperature on the process,
the models are formulated in a temperature-dependent format. As known already
from [9, 10] and shown recently in [26], heat conduction can also provide regular-
ization, unless an adiabatic limit of a thermo-mechanical process is approached.

The aim of this paper is phenomenological modelling and the assessment
of the potential of the selected large strain constitutive models [27, 28] in the
simulation of the qualitative features of the Lueders phenomenon. Therefore, no
model validation is attempted, although it is undoubtedly an important task
for the future. We do not discuss the issues of band direction or velocity either.
The phenomenon is analyzed as plastic front propagation, simulated assuming
quasi-static conditions, i.e. neglecting inertia effects. However, we additionally
analyze the final softening stage after hardening which leads to necking and the
specimen failure.

The viscoplastic model is based on the consistency approach, see [21], however
it accounts here for large strains. The gradient enhanced model is based on [8].
The models are implemented using the AceGen symbolic package for Wolfram
Mathematica [29, 30]. The analyses are performed using standard Newton algo-
rithms with automatic load stepping within the AceFEM finite element solver.
Three-dimensional models are employed.

The paper is organized as follows. Section 2 contains a short presentation of
the employed models and multi-branch hardening laws. In Section 3 the simula-
tion results are presented for the benchmark test of a plate satisfying plane strain
conditions, subjected to uniaxial tension (a three-dimensional model is used to
represent a two-dimensional test). The isothermal process is assumed and the fol-
lowing aspects are investigated: ability of the regularized constitutive models to
simulate Lueders bands, influence of mesh density, viscosity (strain rate), internal
length and boundary conditions on the results. Some viscoplastic model simula-
tions are repeated for the whole plate to investigate whether imposed symmetry



Simulation of Lueders bands. . . 87

affects the results. The case with final softening is included to present a simple
model which enables the simulation of sample failure. In Section 4 the computa-
tion results are presented for a bone-shape plate sample under tension (a three-
dimensional model is used, i.e. plane stress conditions are assumed). The com-
putations are first performed for the viscoplastic and gradient-enhanced model
in isothermal conditions, and then for the general thermo-viscoplastic model and
the gradient enhanced thermo-plasticity. Section 5 contains the conclusions.

The following novelties in the paper can be pointed out:
• Large strain viscoplasticity and gradient-enhanced plasticity models are

implemented in Ace for Mathematica to simulate the phenomenon of Lued-
ers bands in metallic materials. The regularized models are formulated as
temperature-dependent, which enables the analysis of the influence of heat
conduction on the process.
• In a parametric study the influence of several factors on the simulated local-

ized deformation history is analyzed. This leads to conclusions concerning
the regularization efficiency and selected modelling issues.
• The second benchmark with the geometry designed to enable future ex-

perimental analysis examines the response of the models for isothermal,
conductive and adiabatic conditions.

2. Brief description of constitutive models

2.1. Thermo-plasticity

Figure 1 shows an idealized relation of the nominal stress and the averaged
strain for a specimen exhibiting Lueders band propagation. At the beginning of
a localized plastic process, when softening starts, a stationary band arises at the
upper yield limit σU . At the lower yield stress σL a plastic front forms and the
band starts to propagate through the sample. As it passes, the plastic strains
accumulate along the sample and reach the so-called Lueders strain εL. At the
end of the process the deformation can become almost uniform due to hardening.

The material models used in the simulation of such a response are summarized
below, they are based on large strain formulations [8, 31, 32].

A deformable continuous, isotropic body is considered, for which the vectorX
identifies the referential location of a body particle at time t0 and temperature T0,
while vector x denotes the current position of the particle X at time t and tem-
perature T . The function x = ϕ(X, t, T ) describes the motion of the body. The
deformation gradient F is defined as

(2.1) F =
∂ϕ(X, t, T )

∂X
.



88 M. Mucha, B. Wcisło, J. Pamin

Fig. 1. Simplified nominal stress vs. averaged strain relation for specimen deformation
involving Lueders effect.

A decomposition of the deformation gradient into the elastic part Fe, the plastic
part Fp and the thermal part Fθ is performed (see [33–35])

(2.2) F = FeFpFθ = FmFθ,

where Fm is the mechanical part of the deformation gradient [32, 36]. The
thermal contribution Fθ is assumed to be purely volumetric and is defined
as

(2.3) Fθ = (Jθ)1/3I, Jθ = det(Fθ),

where I is the second order identity tensor and the deformation caused by the
temperature change is specified in the following form [35]

(2.4) Jθ = e3αT (T−T0).

In Eq. (2.4) αT is the coefficient of linear thermal expansion.
Based on decomposition (2.2) and assumption (2.4) the mechanical part of

the deformation gradient can be determined as

(2.5) Fm = e−αT (T−T0)F.

The illustration of the deformation decomposition can be found in [26].
For the classical rate and gradient-independent theory the Helmholtz poten-

tial per unit volume in reference configuration is decomposed additively into
elastic, plastic and purely thermal parts (see [31, 32])

(2.6) ψ(be, γ, T ) = ψe(be) + ψp(γ) + ψθ(T ).
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The following forms of the potential components are adopted

ψe(be) =
1

2
G
(
tr(det(be)−1/3be)− 3

)
+

1

2
K(ln(Je))2,(2.7)

ψp(γ) =
1

2
Hγ2,(2.8)

ψθ(T ) = c

(
(T − T0)− T · ln

(
T

T0

))
,(2.9)

where G andK are elastic moduli, be = Fe(Fe)T is the elastic left Cauchy–Green
tensor, Je = det(Fe).

The second component of the free energy is for simplicity expressed as a quad-
ratic function of a scalar equivalent plastic strain γ, but in general it depends
on adopted hardening specification. Moreover, c is the heat capacity.

The Kirchhoff stress tensor and hardening function are derived from the free
energy potential

(2.10) τ = 2
∂ψ

∂be
be, h =

∂ψ

∂γ
.

According to [37] the heat capacity can be defined as c = −T ∂2ψ
∂T 2 and therefore

for the adopted form of free energy the capacity c is constant.
The constitutive relation for heat conduction is the classical Fourier law for

isotropic materials, which is formulated here using the Kirchhoff heat flux vec-
tor q

(2.11) q = −k∇T,

where k is a heat conduction coefficient specified in the reference configuration
and ∇T is a spatial gradient of temperature.

In this paper the yield function is defined as

(2.12) Fp(τ , γ, γ̇, ω) = f(τ )− σy(γ, γ̇, ω) ≤ 0,

where f(τ ) is the Huber–Mises–Hencky (HMH) stress measure and σy is assumed
to represent multi-branch hardening described separately for the viscoplastic
model (dependent on the plastic strain rate γ̇) and the gradient-enhanced model
(where damage-like variable ω reduces the yield strength) in the subsections be-
low. It is noted that a model that would combine the two regularization effects is
not considered in this paper, although this possibility was discussed for instance
in [22, 38]. The following definitions are used

f(τ ) =
√

2J2,(2.13)

J2 =
1

2
τ 2
dev · I,(2.14)

where τdev is a deviatoric part of the Kirchhoff stress tensor.
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Following [31], the associated flow rule is adopted for the Lie derivative of be

(2.15)
1

2
Lvbe = λ̇Nbe,

where N is the normal to the yield surface in the material configuration and
λ̇ denotes the plastic multiplier satisfying the standard Kuhn-Tucker conditions:

(2.16) λ̇ ≥ 0, Fp ≤ 0, λ̇Fp = 0.

The conditions are also satisfied for the regularized models. The plastic multiplier
plays the role of the plastic strain measure γ̇ = λ̇. It is emphasized that due to
large deformations geometrical softening is present in the description, see [39].

Due to the distinction between the reference and the current configurations
in large strain analysis the governing equations can be formulated in the ma-
terial description, see e.g. [40], or in the spatial description, e.g. [37]. In the
present model the spatial quantities are used. However, they are referred to the
volume/surface in the reference configuration, see e.g. [41].

The two governing equations which describe the analyzed coupled problem
are the balance of linear momentum written in the local form in Eq. (2.17) and
the energy balance presented in the temperature form in Eq. (2.18)

ρ0
∂2ϕ

∂t2
= J div(τ/J) + ρ0y,(2.17)

c
∂T

∂t
= J div(−q/J) +R.(2.18)

In Eq. (2.17) div(·) is the divergence computed with respect to Eulerian coordi-
nates, ρ0 is the reference density and y is a given spatial body force field. For the
static analysis which is presented in the paper the left–hand side of Eq. (2.17) is
equal to zero.

In Eq. (2.18) R is a heat source density. In the adopted model it includes
heating due to plastic dissipation and has the following form [32]

(2.19) R =

√
2

3
χσyγ̇.

The parameter χ in Eq. (2.19) denotes a dissipation heat factor which for sim-
plicity is assumed to be constant, cf. [42]. The balance of linear momentum (2.17)
is completed with boundary conditions for displacements u and tractions t:

(2.20)
u = û on ∂Bu,

t = τ · n = t̂ on ϕ(∂Bτ ),
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where n is the normal to the body surface and as usual

(2.21) ∂Bu ∪ ∂Bτ = ∂B and ∂Bu ∩ ∂Bτ = ∅.

The energy balance equation (2.18) is also complemented with appropriate
boundary conditions:

(2.22)
T = T̂ on ∂BT ,

q · n = q̂ on ϕ(∂Bq),

where

(2.23) ∂BT ∪ ∂Bq = ∂B and ∂BT ∩ ∂Bq = ∅.

The weak forms of the governing equations are the basis for the finite element
implementation. Applying the standard derivation: multiplication by the test
function δu, integration over the volume of body B, application of divergence
theorem and Neumann boundary conditions, the balance of linear momentum
has the following weak form

(2.24)
∫
B

(∇δu : τ + δu ·B) dV +

∫
ϕ(∂Bτ )

δu · t̂ da = 0.

The weak form of the energy balance equation (2.18) is also obtained using the
standard procedure and the backward Euler scheme for time integration. The
following integral equation is valid for the current time moment

(2.25)
∫
B

(
δT

c

∆t
(T − Tn) +∇δTk∇T − δTR

)
dV +

∫
ϕ(∂Bq)

δT q̂ da = 0,

where Tn is the value of temperature at the previous time instant and ∆t is the
time increment.

2.2. Viscoplastic model

The viscoplastic model follows the consistency concept, cf. [21]. The yield
function is defined as

(2.26) Fp(τ , γ, γ̇, T ) = f(τ )− σy(γ, γ̇, T ) ≤ 0

and the yield strength for the isothermal case contains the following hardening
function

(2.27) σy(γ, γ̇) =
√

2/3(σy0 + h(γ)) + ξγ̇,



92 M. Mucha, B. Wcisło, J. Pamin

where ξ is viscosity. Please note that viscosity ξ has been denoted S in the
Introduction.

It is assumed that the viscous term affects the hardening during the whole
process, although viscosity provides numerical regularization rather than is
treated as a physical property.

The top two diagrams in Fig. 2 show simplified multilinear models of yield
strength evolution with the increase of a plastic strain measure σy(γ) which are
first used in this paper. According to the first diagram in Fig. 2, which was used
in [21] and which mimics the specimen response in Fig. 1 we have

(2.28) h(γ) =


H1γ, γ ≤ γ1,
H1γ1, γ1 < γ < γ2,

H1γ1 +H2(γ − γ2), γ ≥ γ2,

with H1 < 0 and H2 > 0. However, as noticed in [20], “typical mechanical
response exhibiting a stress plateau is often incorrectly interpreted as the ma-
terial response, while it is in fact the response of a specimen, which is related
to nucleation and propagation of macroscopic transformation fronts” – here the
authors mean the Lueders front. Therefore, we also consider the second softening-
hardening diagram shown in Fig. 2 on the top right (γ2 = γ1).

Fig. 2. Yield stress vs equivalent plastic strain relations: multi-linear used in viscoplastic
model (top), and nonlinear used in isothermal gradient-enhanced model (bottom left),

quadratic used in temperature-dependent case (bottom right).
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For the thermo-viscoplastic model a smooth quadratic hardening function is
adopted, see Fig. 2 bottom right. The yield strength is then defined as follows

(2.29) σy(γ, γ̇, T ) =
√

2/3[σy0(1−HT (T − T0)) +Hq2γ
2 +Hq1γ] + ξγ̇,

where Hq2 and Hq1 are quadratic hardening parameters calculated from three
given points. The part (1−HT (T − T0)) represents thermal softening in a sim-
plified linear manner HT is a thermal softening modulus. Different formulations
of thermal softening and their numerical verification can be found in [43].

As has been mentioned, the introduction of viscosity can serve as a regu-
larization method. As argued in [44], there is a material length associated with
viscosity lv = ξ/

√
Eρ, where ξ is viscosity [kg/(m · s)], E is the Young modulus

[kg/(m · s2)] and ρ is density [kg/m3]. It is stated in [44] that “any rate depen-
dence in the constitutive law combined with inertial effects introduces an internal
length scale”. However, “for load durations much larger than the relaxation (or
retardation) time associated with the type of viscosity used, the modelling is not
completely objective”. This relaxation time is “the time of passage of a wave front
over the distance lv”, so it is calculated as τ0 = lv/v = ξ/E, where v =

√
E/ρ is

longitudinal elastic wave velocity. Thereby, it is remarked that since inertia forces
are not incorporated in the analyses presented in this paper (ρ is not specified),
we do not simulate wave propagation. Moreover, if viscosity is a known material
parameter, and its value is too small to regularize the problem, the nonlocality
is a proper option of model enhancement.

2.3. Gradient-enhanced plasticity model

The yield function for the gradient-enhanced thermo-plastic model is defined
as an extension of the model of [8]

(2.30) Fp(τ , γ, ω, T ) = f(τ )− σy(γ, ω, T ) ≤ 0,

where the yield strength for the isothermal case depends on a degradation pa-
rameter ω in the following way

(2.31) σy(γ, ω) =


√

2/3(σy0 +H1γ)(1− ω), γ ≤ γ1,√
2/3(σy0 +H1γ1)(1− ω1), γ1 < γ < γ2,√
2/3(σy0 +H1γ1 +H2(γ − γ2))(1− ω1), γ ≥ γ2,

while H1 ≥ 0 and H2 ≥ H1 are now assumed since softening is induced by the
plastic-degradation variable ω ∈ [0, 1]. Its evolution is described by the following
formula

(2.32) ω = 1− exp(−βz),
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where β is a ductility parameter and nonlocal variable z is obtained from the
averaging equation [7]

(2.33) z − l2∇2
0z =

√
2/3γ

in which l is an internal length scale, ∇0 is the gradient operator in mate-
rial description. Thus, variable z has the interpretation of non-local (averaged)
equivalent plastic strain, see [8], so Eq. (2.33) controls the localization of γ. It
is mentioned that the yield strength degradation is frozen ω = ω1 when γ ≥ γ1
to exclude further material softening. It is also emphasized that in the numer-
ical solution algorithm the averaged plastic strain z is discretized in addition
to displacements and two-field finite elements are used. Homogeneous natural
boundary conditions are assumed as usual for Eq. (2.33).

For the gradient-enhanced thermo-plastic model the quadratic hardening sim-
ilar to the thermo-viscoplastic model is used. The yield strength is defined as
follows

(2.34) σy(γ, ω, T ) =
√

2/3[σy0(1−HT (T − T0)) +Hq2γ
2 +Hq1γ](1− ω),

where Hq2 and Hq1 are square hardening parameters calculated from three given
points. The part (1−HT (T − T0)) is linear thermal softening, HT is a thermal
softening modulus. As in the isothermal case, the value of ω is frozen for γ ≥ γ2.

3. Numerical implementation

The whole process of the numerical implementation and testing is performed
in Wolfram Mathematica packages called AceGen and AceFEM. The first pack-
age is used for the development of a user subroutine for the finite element method.
The code is prepared in a special symbolic programming language, automatically
translated and transferred to a chosen finite element environment (i.e. ABAQUS,
FEAP), in this case to AceFEM. The main advantage of AceGen is its capability
of automatic differentiation which is used for linearization of the governing equa-
tions. Usually, it is the most time consuming stage of code development. The
detailed description of AceGen features and examples of usage can be found for
example in [29]. In turn, AceFEM is chosen because of its perfect collaboration
with AceGen and user-friendly pre- and postprocessing.

An extensive description of the AceGen implementation of isothermal models
like elastoplasticity (with gradient averaging) as well as thermo-plasticity and
non-local thermo-plasticity can be found in [45]. The codes for the isothermal
and non-isothermal viscoplasticity are developed basing on the same approach.
It is worth mentioning that the time derivative of γ in the viscous term ξγ̇ of
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the hardening function in Eq. (2.26) is implemented with the backward Euler
scheme as follows

(3.1) γ̇ =
γn − γn−1

∆t
,

where γn and γn−1 denote the values of the equivalent plastic strain in the
current and previous time steps, respectively, and ∆t is a time increment in the
computational step.

All user subroutines prepared in AceGen by the authors are for three dimen-
sional finite elements, in particular hexahedral elements with linear interpolation
of all fields (i.e. mechanical, thermal and the one related to the averaging equa-
tion), called H8. The linear interpolation is favourable in terms of computational
effort and time, however, it is known that the results for plasticity can be affected
by volumetric locking [28]. From among different methods which can be used to
prevent the problem we have selected so-called F-bar enhancement [46] which is
convenient for AceGen implementation.

4. Simulation of Lueders bands in extended plate

4.1. Test description

The examples considered in this paper are a rectangular plate and a bone-
shape sample, both under tension, presented in Fig. 3.

We first focus on the plate benchmark. The three-dimensional FE model is
used with one element along the thickness. The dimensions of one-fourth of the
plate are L = 0.1 m and W = 0.05 m. The thickness is 0.0025 m, which due
to assumed plain strain constraints is not important. The plane strain state in
the three-dimensional model is obtained through kinematic boundary conditions,

Fig. 3. Analyzed configurations. Left: one-fourth of rectangular plate (imperfection location
marked red), boundary conditions block the displacement in thickness direction at every node
(dimensions of whole plate 2L× 2W are 20 × 10mm). Right: bone-shape sample, dimensions

given in mm, thickness is 1 mm.
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namely all displacements in the transverse direction are blocked. In this initial
test the interest is limited to isothermal conditions.

The plate is stretched in the length direction with the maximum displacement
equal to 40 mm (∆L = 0.4L), multiplied by a loading factor λ ∈ [0, 1]. One case
for the viscoplastic model was computed for ∆L = 0.6L (60 mm).

The two models, viscoplastic and gradient-enhanced, are used with the HMH
yield function and multil-branch hardening. The computations for the viscoplas-
tic model are carried out for different viscosities and mesh densities. Unless noted
otherwise, the simulations are performed for the time period till tmax = 10−4 s
(called maximum tension time), which determines the speed of the loading pro-
cess. The hardening modulusH1 is equal to −0.01 E, and the hardening modulus
H2 is equal to 0.005 E.

The gradient-enhanced model is employed with different internal lengths and
mesh densities. For this model the hardening modulus H1 is equal to zero, so in
the first stage softening is due to damage-like coefficient 1−ω, and the hardening
modulus H2 is equal to 0.01 E.

Table 1. Material and computation process parameters

Property Symbol Value Unit
Young Modulus E 207·103 MPa
Poisson ratio ν 0.29 –
Yield threshold σy0 450 MPa
Linear hardening modulus H1 −0.01/0 E MPa
Linear hardening modulus H2 0.005/0.01 E MPa
First threshold γ1 0.15
Second threshold γ2 0.3
Enforced displacement ∆L 40/60 mm
Viscosity ξ 0 ÷ 0.04 MPa · s

Maximum tension time tmax 10−4/10−3/10−2 s
Ductility β 10 –
Internal length l 5/10/20 mm

The test parameters are listed in Table 1, the upper part contains the pa-
rameters employed in both models, the middle part includes the parameters for
the viscoplastic model and the bottom part for the gradient-enhanced one.

For most tests of the plate sample a mesh with 800 (40×20×1) elements H8
is used, called mesh1. A second mesh, called mesh2, contains 3200 (80× 40× 1)
cubic elements, and mesh3 contains 12800 (160 × 80 × 1) elements. To trigger
the first shear band an imperfection is introduced, namely the yield strength is
reduced to 90% in one corner element of mesh1, see Fig. 3 (left), and in the same
volume for denser meshes.
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4.2. Numerical results for viscoplastic model

The results of numerical simulations obtained using the viscoplastic descrip-
tion are presented in this section. First, different viscosities are considered.

Four diagrams for the sum of reactions vs the load multiplier are shown in
Fig. 4. The diagrams on the left-hand side show the results for different viscosities
and for two mesh densities. The top diagram on the right-hand side shows the
first part (λ ∈ [0, 0.2]) of the left-hand side diagram. The bottom diagram on
the right-hand side shows the results for ξ equal to 0.004 MPa·s, mesh1 and
two maximum values of imposed displacement ∆L. For zero or small viscosities
(ξ ≤ 0.001) the diagrams exhibit strong softening, then oscillatory response and
mesh sensitivity. For ξ = 0.004 the softening response weakly depends on mesh
density, but the final hardening stage is not visible so the simulation is repeated
for larger ∆L, see the figure on the right. For ξ = 0.01 and ξ = 0.04 the diagrams
are mesh-insensitive. However, it is observed that for ξ = 0.04 the initial yield
strength is strongly exaggerated, which signals excessive regularization.

Fig. 4. Sum of reactions vs displacement multiplier for different viscosities, mesh densities
and imposed displacement ∆L.

In Figure 5 the distributions of equivalent plastic strain γ and its increment
(in computational step) ∆γ as well as plots of ∆γ along the longitudinal specimen
axis are presented for ξ equal to 0.004, mesh1 and selected values of the load
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Fig. 5. Results for viscoplastic model with ξ = 0.004 for three extension values λ = 0.08 (left
column), λ = 0.66 (center), and λ = 1 (right). First row: distributions of γ in deformed plate,
second row: distributions of ∆γ in deformed plate, third row: plot of ∆γ along longitudinal

axis of undeformed plate.

factor λ. The plots of ∆γ distribution are made for a horizontal cross-section
through the centre of the undeformed configuration. Figure 6 is an extension
of Fig. 5 for maximum displacement ∆L equal to 0.6L and contains only the
distributions of ∆γ. Figure 7 is prepared in a similar way as Fig. 5 for ten times
smaller viscosity ξ = 0.0004.

In the first phase of loading a shear band forms (see Fig. 5, left, or Fig. 6, first
row, left or Fig. 7, left). Then the shear band starts to move through the sample
and it separates into two bands where the process is active, moving in opposite
directions (see Fig. 6, first row, right). One of the bands disappears when it
reaches the left edge of the sample and then only one band with a perpendicular

Fig. 6. Distributions of ∆γ for deformed plate, viscoplastic model with ξ = 0.004 and
∆L = 0.6L. First row: λ = 0.08 (left), λ = 0.2 (center) and λ = 0.24 (right); second row:

λ = 0.66 (left), λ = 0.68 (center) and λ = 1.5 (right).
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reflected following band is visible (see Fig. 5 middle or Fig. 6, second row left
or Fig. 7 middle). When the band approaches the right edge of the sample, an
additional reflected band appears, originated from the right bottom corner (see
Fig. 6, second row, middle). When the process finishes, the active zone is visible
near the right end of the sample (see Fig. 5, second and third row, right, or
Fig. 7, second and third row, right). When the process is longer, the hardening
stage is clearly visible (see Fig. 4 right bottom) and at the end almost uniform
deformation is obtained (see, Fig. 6, second row, right).

Fig. 7. Results for viscoplastic model with ξ = 0.0004 for three extension values λ = 0.02
(left column), λ = 0.076 (center) and λ = 1 (right). First row: distributions of γ for deformed

plate; second row: distributions of ∆γ for deformed plate; third row: plot of ∆γ along
longitudinal axis of undeformed plate.

Next, the viscoplastic model is considered for different load duration times,
i.e. maximum tension times (tmax). Two diagrams for the sum of reactions vs
the load multiplier are shown in Fig. 8 for viscosity equal to 0.01 (left) and 0.04
(right). As is shown in Fig. 8, a faster process results in a stronger influence of
viscosity and stronger regularization. Since viscosity is the only time-dependent
effect in the isothermal case, the change of loading duration and hence in the rate
of γ is related to the change of the viscosity parameter. In fact, a higher viscosity
and smaller tmax have a similar influence on the yield strength, cf. Eq. (2.27).
It is also mentioned that for small viscosity and/or slower loading (larger tmax)
some secondary softening stages can be seen in the diagrams. This is due to
formation of additional localization bands or patterns during the passage of the
main shear band, which has a transient character.

In Fig. 9 the results for the hardening diagram given in Fig. 2 top right, called
in brief “soft-hard” (γ1 = 0.15) are compared with the results for the hardening
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Fig. 8. Sum of reactions vs displacement multiplier for different tmax while ξ = 0.01 (left)
and ξ = 0.04 (right).

Fig. 9. Sum of reactions vs displacement multiplier for different softening-hardening laws
and ξ = 0.0004.

Fig. 10. Results for viscoplastic model with ξ = 0.0004 and γ2 = γ1, obtained for three
extension values λ = 0.02 (left column), λ = 0.55 (center) and λ = 1 (right). First row:

distributions of γ for deformed plate; second row: distributions of ∆γ for deformed plate;
third row: plot of ∆γ along longitudinal axis for undeformed plate.
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function from Fig. 2 top left (called “soft-const-hard”) (γ1 = 0.15, γ2 = 0.3). The
diagrams for the two cases are quite similar, however the plateau part for the
“soft-hard” case is shifted upwards and a hardening part is observed for λ > 0.8.
This is caused by neglecting the ideal plasticity stage between γ1 and γ2, see
Fig. 2, and faster hardening. It is however stressed that the almost horizontal
branch in the plate response is observed in the absence of the ideal plasticity
stage in the hardening diagram.

In Fig. 10 the results for the “soft-hard” diagram matching the results for the
“soft-const-hard” diagram in Fig. 7 are presented. It can be seen that now the
moving band reaches the opposite end of the sample sooner than for the former
case. Moreover, the sample now deforms uniformly at the end of the process
when λ = 1, see the right plot in Fig. 10, contrary to the case presented in the
right plot of Fig. 7 where for λ = 1 a shear band pattern is still visible and
hardening does not dominate yet, see the blue line in Fig. 9.

4.3. Numerical results for gradient enhanced model

In this section the analysis is performed using the gradient-enhanced isother-
mal model. The internal lengths in the performed simulations are 5, 10 and
20 mm (the element size for the coarse mesh1 is 2.5 mm). Usually the internal
length l is assumed to be related to a characteristic microstructure dimension.
Here it is treated as a numerical regularization parameter, scaling the gradient
influence and hence being a measure of nonlocality.

Fig. 11. Sum of reactions vs displacement multiplier for different internal lengths and mesh1
(left) and for different mesh densities for internal length equal to 0.1L (right).

Two diagrams for the sum of reactions vs the load multiplier are shown in
Fig. 11. The results for different internal lengths are presented on the left-hand
side. The diagrams differ as expected up to a cross point about λ = 0.45 and
the response is stiffer for larger length l. A secondary softening appears first for
the largest internal length, then for the smaller value. Obviously, the internal
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length and related smoothing of the shear band formation influences the simu-
lated evolving localization patterns. On the right-hand side the results for the
internal length equal to 0.1L and different mesh densities are presented. Dis-
cretization sensitivity is hardly visible for the considered three meshes. In gen-
eral, the response for the gradient-enhanced model is similar to the viscoplastic
one. However, the diagrams of the sum of reactions vs load multiplier for the
gradient model are smoother than for viscoplasticity, so it seems the gradient
enhancement is a stronger regularization than viscosity.

In Fig. 12 the distributions of γ and ∆γ and plots of ∆γ along the longitudi-
nal axis of the configuration are presented for the internal length equal to 0.1L,
mesh1 and different values of λ. Similarly to the viscoplastic computations, in
the first phase of loading a shear band forms (see Fig. 12, second row, left).
The band starts to travel through the sample and splits into two bands, where
the process is active. They move in opposite directions (see Fig. 12, second row,
middle and right). The two bands are connected with a perpendicular band,
so a pattern of bands reflected on the boundaries is visible. One of the bands
vanishes when it reaches the left edge of the sample and only the right band

Fig. 12. Results for gradient-enhanced model with internal length l = 0.1L. First row:
distributions of γ for deformed plate, for three extension values λ = 0.02 (left), λ = 0.64

(center) and λ = 1 (right); second row: distributions of ∆γ for deformed plate, for λ = 0.02
(left), λ = 0.05 (center) and λ = 0.14 (right); third row: distributions of ∆γ for deformed

plate, for λ = 0.64 (left), λ = 0.68 (center) and λ = 1 (right); fourth row – plots of ∆γ along
horizontal axis for undeformed plate for three extension values λ = 0.02 (left), λ = 0.64

(center) and λ = 1 (right).
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Fig. 13. Plots of ∆γ along horizontal axis for undeformed plate, extension value λ = 0.02
and different internal lengths from left: l = 0.05L, l = 0.1L, l = 0.2L.

with a reflected following band propagates (see Fig. 12, third row, left). At the
end of the process the active zone is diffuse near the right end of the sample
and a neck seems to form (see Fig. 12, third row, right). It is stressed that the
width of the initially formed shear band, visible in the left diagram showing the
cross-section through the ∆γ plot in Fig. 12, depends on the assumed internal
length, see Fig. 13.

4.4. Numerical tests for whole plate and viscoplastic model

In this section numerical tests for the whole plate models and selected pa-
rameters of the viscoplastic description are presented. Two configurations are
used, the configuration C1 for which the boundary conditions are symmetric
and identical as for the plate quarter analyzed before (4 imperfect elements in
the center are used see Fig. 14 left), but with imposed extension on both sides,
and the configuration C2 with imposed displacement on one side, for which the
boundary conditions are shown in Fig. 14 right (and only one imperfect element
triggers localization). Different imperfection positions are thus assumed, but in
each case the total extension of the plate is 0.8L, where the plate length is 2L.
For configuration C1 the viscosity equal to ξ = 0.0004 is used, for the configura-
tion C2 the viscosity is equal to ξ = 0.004 and for both configurations the finite
element size is identical as for mesh1 presented in the earlier sections.

Fig. 14. Boundary conditions for whole plate (imperfection location is marked red). On the
left-hand side configuration C1, on the right-hand side configuration C2.
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When the plate in the configuration C1 is stretched, a cross-shape band
appears first, then it evolves into double bands which move in opposite directions
producing an original pattern, see Fig. 15 first row. After the two cross patterns
fully separate, reflected bands develop, see Fig. 15 second row left and middle.
When the bands approach the ends of the sample, band patterns appear there
and the deformation gradually becomes uniform, see Fig. 15 second row right.
The plate behaviour in the configuration C1 is similar to the response of one-
fourth of the plate.

Fig. 15. Distributions of ∆γ for whole deformed plate C1 with imposed symmetry and
viscoplastic model with ξ = 0.0004. First row: λ = 0.031 (left), λ = 0.16 (center) and
λ = 0.54 (right); second row: λ = 0.86 (left), λ = 1.51 (center) and λ = 2 (right).

The model behaviour for the configuration C2 is different due to different
boundary conditions and imperfection (symmetry not imposed). First a single
band is formed, then it starts to spread and separates into two bands with addi-
tional reflected bands, see Fig. 16 first row. Then the formed pattern resembling
half of cross-shape with following more distributed localization zone moves to
the right, see Fig. 16, second row left and middle. When the pattern reaches
the opposite edge of the plate the deformation approaches a uniform state, see
Fig. 16 second row right.

Fig. 16. Distributions of ∆γ for whole deformed plate C2 with corner imperfection and
viscoplastic model with ξ = 0.004. First row: for λ = 0.14 (left), λ = 0.34 (center) and
λ = 0.43 (right); second row: λ = 1.07 (left), λ = 1.62 (center) and λ = 2 (right).



Simulation of Lueders bands. . . 105

4.5. Numerical tests for extended plate and viscoplastic model with final softening

Finally, one-fourth of the plate is considered with the first multilinear hard-
ening diagram in Fig. 2, enriched with final softening branch to trigger failure.
Two new parameters are introduced, γ3 = 0.45 andH3. When γ reaches the third
threshold γ3 the linear hardening modulus becomes negative again (H3 = −0.001
of E). In Fig. 17 the sum of reactions is plotted versus the displacement multi-
plier. The first band formation, evolution and propagation occur as shown before
in Subsecttion 3.2 (see Fig. 18 first row and second row left). When deformation
becomes uniform, final softening is triggered and a shear band forms again at the
left edge of the plate as a precursor to necking (see Fig. 18 second row, right).

Fig. 17. Sum of reactions vs displacement multiplier for test with final softening branch.

Fig. 18. Distributions of ∆γ for deformed plate quarter, viscoplastic model with ξ = 0.004,
∆L = 0.6L and final softening branch. First row: for λ = 0.12 (left), λ = 0.24 (center) and

λ = 0.31 (right); second row: λ = 0.44 (left), λ = 0.8 (center) and λ = 1.13 (right).

5. Simulation of Lueders bands in bone-shape sample

5.1. Test description

The bone-shape sample subjected to tension and its dimensions are presented
in Fig. 3 (right). A three-dimensional finite element model is used (no plane strain
constrains are applied). The sample is stretched in the length direction with the
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maximum displacement equal to 20 mm. The two models, thermo-viscoplasticity
and gradient-enhanced thermo-plasticity, are used with the HMH yield function.
The boundary conditions for the temperature field are adiabatic (no heat flux
through the surface). Thus the temperature evolution in the specimen is due
to plastic self heating. The computations for the viscoplastic model are carried
out for different viscosities, mesh densities and coefficients of heat conduction.
The maximum tension time for the bone-shape sample is 100 s. The hardening
modulus H1 is equal to −0.005E, and the hardening modulus H2 is equal to
0.005E.

Table 2. Points to compute quadratic hardening parameters.

First value of yield stress σ1 = σy0 450 MPa First value of γ γ1 0
Second value of yield stress σ2 375 MPa Second value of γ γ2 0.15
Third value of yield stress σ3 450 MPa Third value of γ γ3 0.3

Table 3. Thermal and computation process parameters.

Property Symbol Value Unit
Young Modulus E 207 · 103 MPa
Poisson ratio ν 0.29 -
Yield threshold σy0 450 MPa
Linear hardening modulus H1 −0.005/0 E MPa
Linear hardening modulus H2 0.005 E MPa
First threshold γ1 0.15
Quadratic hardening modulus Hq1 −0.0048 E MPa
Quadratic hardening modulus Hq2 0.016 E MPa
Enforced displacement ∆L 20 mm
Maximum tension time tmax 100 s
Conductivity k 0 ÷ 200 J/(s · K · m)

Heat capacity c 460 J/(kg · K)

Thermal expansion coeff. αT 12 · 10−6 1/K
Thermal softening modulus HT 0.02 1/K
Dissipation heat factor χ 0.9 –
Reference temperature T0 273.15 K
Viscosity ξ 0 ÷ 400 MPa · s

Ductility β 1 –
Internal length l 0/5/10/20 mm

The gradient-enhanced model is employed with different internal lengths,
mesh densities and conductivities. For this model the hardening modulus H2

is equal to 0.005E in isothermal conditions. For the thermo-viscoplastic model
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a quadratic hardening function is employed, see Eq. (2.34). The hardening pa-
rameters Hq1 and Hq2 are calculated from three given points, see Table 2. The
material model parameters are listed in Table 3. Since a slower process is now
assumed (larger tmax), the value of viscosity ξ necessary for regularization is also
higher.

For most tests of the bone-shape sample a fine mesh with 8320 hexahedral
elements H8 with F enhancement [46] is used, called mesh3. For the three-
field elements with discretization of displacements u, averaged strain measure
z and temperature T linear interpolation is used for all fields. A second mesh,
called mesh2, contains 2168 cubic elements, and the coarse mesh1 contains 334
elements. An imperfection is not introduced in the bone-shape sample.

5.2. Numerical results for isothermal viscoplastic model

In Fig. 19 the diagrams for different values of viscosity and for different mesh
densities are shown. For two lower values of viscosity a second softening and
then hardening stage can be seen between λ equal to 0.3 and 0.4. This is caused
by different types of localization when two bands are formed at the beginning of
the process and in that interval they merge, see Fig. 21.

In Figs. 20 and 21 the distributions of γ̇ (∆γ/∆t) in the bone-shape sample
are presented. The first two plots from the left in Fig. 20 show localization of
a single cross-shape band pattern in the middle of the sample. When the soft-
ening stage is finished two band patterns occur and move in opposite directions
(next four plots). At the end of the next phase, when hardening dominates, the
deformation in the extending process zone becomes uniform (last plot).

The first plot from the left in Fig. 21 shows localization of a double cross-
shape band pattern in the central part of the sample. When the softening stage
ends four band patterns form and move in opposite directions (next three plots).
When the bands merge a single cross-shape can be seen in the middle of the

Fig. 19. Sum of reactions vs displacement multiplier for different viscosities and mesh3 (left)
and for different mesh densities while viscosity is equal to 400.0 (right).
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Fig. 20. Distributions of γ̇ for viscosity equal to 400 and mesh3, patterns for λ equal to
(from left) 0.01, 0.05, 0.07, 0.14, 0.21, 0.37, 1.

Fig. 21. Distributions of γ̇ for viscosity equal to 4.0 and mesh3, patterns for λ equal to
(from left) 0.01, 0.11, 0.16, 0.24, 0.32, 0.43, 1.

sample, which dominates the process (fifth plot, see also Fig. 19, left plot). When
the two bands merge, the second softening stage is over and the process continues
(sixth plot). At the end of the next phase deformation becomes uniform due to
hardening (last plot).

5.3. Numerical results for gradient-enhanced model

In Fig. 22 the diagrams for different values of internal length and for different
mesh densities are shown. The internal length dependence is small and mesh
sensitivity for the gradient model is hardly visible. In Fig. 23 the distributions
of γ̇ (∆γ/∆t) are presented. The first three plots from the left show localization
of a single cross-shape band pattern in the middle of the sample. When the
softening stage ends two band patterns (plastic fronts) appear and propagate
in opposite directions. At the end of the hardening phase, deformation becomes
uniform similarly to the previous simulations.
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Fig. 22. Sum of reactions vs displacement multiplier for different internal lengths and mesh3
(left) and for different mesh densities for internal length equal to 10 mm (right).

Fig. 23. Distributions of γ̇ for internal length equal to 10 mm and mesh3, patterns for λ
equal to (from left) 0.005, 0.006, 0.02, 0.05, 0.08, 0.2, 0.73, 1.

5.4. Numerical results for thermo-viscoplastic model

In Fig. 24 the diagrams for different values of viscosity and conductivity and
for different mesh densities are shown. If not stated differently conductivity k
equal to 50 J/(s·K·m) is assumed. The diagrams for three values of viscosity are
very similar, but oscillations are smaller for larger values of ξ. Some oscillations
are also visible for conductivity k equal to 0. The heat conduction provides an
additional regularization (the first one is viscosity), therefore for k larger than
50 the differences between diagrams are minor. The slopes of lines are slightly
different for different values of k and differences are noticeable on horizontal
parts of diagrams. The differences gradually vanish during the hardening stage.
The oscillations can partly be caused by thermal softening and for the lower
value of k the conductivity is not high enough to prevent them.

In Fig. 25 the evolution of γ̇ distribution in the bone-shape sample is pre-
sented. The behaviour is similar to what can be observed for the isothermal
model (see Fig. 20 left). First a cross-shape band pattern occurs in the middle
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Fig. 24. Sum of reactions vs displacement multiplier for different viscosities (top, left) while
k = 50, different mesh densities for k = 50 and ξ = 400 (top, right) and different

conductivities for ξ = 400 (bottom, right).

of the sample. Then two band patterns form and move in opposite directions.
Due to the oscillations this process is not symmetric. One of the bands almost
disappears (see Fig. 25, fourth pattern from left) and they move with different
speeds (see Fig. 25 fifth from left). In Fig. 26 the distributions of relative temper-
ature T −T0 in the bone-shape sample are presented. For k equal to 0 (adiabatic
case) the temperature field is localized, contrary to the case when the value of
conductivity is higher and the temperature field is diffuse.

Fig. 25. Distributions of γ̇ for ξ = 400, k = 50 and mesh3, plots for λ equal to (from left)
0.03, 0.06, 0.14, 0.3, 0.46, 0.54, 1.
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Fig. 26. Distributions of T − T0 for ξ = 400, mesh3 and k = 0 (left, three plots) and k = 100
(right, three plots), plots for λ equal to (from left) 0.03, 0.06, 0.3 (the same steps are used for

both cases).

5.5. Numerical results for gradient-enhanced thermo-plastic model

Finally, the Lueders bands propagation in the bone-shape sample is simu-
lated using the gradient-enhanced thermo-plastic model. In Fig. 27 diagrams for
different values of internal length and conductivity, and for different mesh den-
sities are shown. The oscillations are stronger than observed in Fig. 24 for the

Fig. 27. Sum of reactions vs displacement multiplier for different internal length for mesh3,
k = 50 (top, left), for different mesh densities for l = 10, k = 50 (top, right), and for different

conductivities for mesh3, l = 10 (bottom).
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thermo-viscoplastic model. Time steps used for calculations are much smaller
due to problems with convergence. We can then observe small sensitivity to the
mesh size and the internal length (only for l = 0 the response is originally more
brittle and the simulation diverges for λ = 0.39).

Fig. 28. First row: distributions of γ. Second row: distributions of T − T0. Assumed l = 10,
k = 50, mesh2 and λ equal to (from left) 0.05, 0.1, 0.14, 0.24, 0.36, 0.49, 1.

In Fig. 28 the distributions of plastic strain measure γ and temperature T−T0
are shown. The localisation starts at the bottom of the sample probably due to
a numerical imperfection. Then plastic fronts form and start to move. At the end
of the process a uniform deformation is visible in the middle part of the sample.

For k = 0 (see Fig. 27 bottom) a much lower diagram is simulated which
suggests the regularization with l = 10 is insufficient in the adiabatic case k = 0.

6. Conclusions

The goal of this paper has been to simulate the propagative instability phe-
nomenon called Lueders bands using two regularized large strain models: vis-
coplasticity and gradient-enhanced plasticity. The Huber–Mises–Hencky yield
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function with multi-branch hardening has been employed. Moreover, the influ-
ence of temperature increase (and the related phenomena: conduction of thermal
energy, plastic heating and thermal softening) has additionally been examined.
AceGen and AceFEM numerical packages for Wolfram Mathematica have been
used to implement the models. Computations have been performed for an ex-
tended rectangular plate in an isothermal regime and for a bone-shape sample in
isothermal and conductive conditions. A parametric study has been performed
concerning the value of viscosity and the internal length for the two respective
models, and also the heat conductivity. Three mesh densities have been used to
verify discretization sensitivity.

It has been observed that the elastic-plastic model with multi-branch hard-
ening enables the simulation of Lueders bands. It has been shown that the band
pattern evolves in the plate or the bone-shape sample starting from an initially
formed shear bands related to the softening stage in the material response. As ex-
pected, the width of the shear bands grows with increasing viscosity and internal
length, respectively.

In the rectangular plate the plastic zone broadens when softening finishes,
reflections of the bands on specimen boundaries are observed and the dominating
shear band propagates along the specimen. The influence of viscosity on the band
formation and evolution is significant. A large viscosity results in an excessive
load-carrying capacity of the specimen at the beginning of the process. When
regularization provided by viscosity is not sufficient, different band patterns, for
instance a double-band pattern, can be seen in the sample. When the process
duration is larger (and hence the process rate is smaller), a stronger viscosity is
needed to regularize the response. It has been confirmed that for a large enough
viscosity a spurious mesh dependence of the results is removed. However, it
has also been shown that the regularization reduces oscillations present in load-
displacement diagrams.

Further, the consequences of modelling of a quarter of the plate due to sym-
metry have been addressed and the simulations have been repeated for a full-size
configuration, thereby examining the influence of boundary conditions. Next to
Lueders-type response to a softening-constant-hardening yield strength function,
a softening-hardening function and an additional final softening stage leading to
failure have also been simulated. It is confirmed that the horizontal branch in the
hardening input is not necessary in the model to represent the plateau in the
Lueders-type response, which has a structural character and is caused by an
interaction of softening and hardening at the point level and propagating local-
ization.

Concerning the gradient-enhanced model, in the considered range of internal
length scales the influence of gradients on the results is visible but not as strong as
the influence of viscosity. Mesh sensitivity for the gradient model is not visible in
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the first softening phase, the diagrams for the plate start to differ when secondary
softening appears due to a change of instability mode.

The results for bone-shape sample in the isothermal case are quite similar,
although depending on the viscosity one now observes the propagation of dif-
ferent cross-shape shear band patterns. The results of this test performed with
the gradient model show small influence of the internal length. For both models
mesh sensitivity is hardly visible.

In the thermo-mechanical model thermal softening of the yield strength with
temperature increase is included, which is an additional instability source, result-
ing in stronger response oscillations. Some mesh sensitivity is also visible even
for significant viscosity and larger internal lengths. In this paper the heat con-
duction is not treated as a localization limiter, although its regularizing effect is
recorded, i.e. larger conductivity results in more ductile load-extension diagrams
and diffuse distribution of temperature changes caused by plastic heating. It is
found that for the assumed set of data the influence of the plastic heating and
conduction on the Lueders bands propagation is not significant.

The research has several open ends. Most importantly, a series of laboratory
experiments is planned to validate the model parameters and get a deeper in-
sight into the rate-sensitivity of the phenomenon. Although the Lueders bands
are observed at room temperature, a broader analysis of the influence of the
thermal phenomena on the process should be made using the fully coupled
thermo-mechanical description. Moreover, dynamic loading conditions could be
considered in simulations of propagative instabilities [47]. Simulations of the PLC
effect which in certain conditions follows the transient Lueders effect can then
be performed.
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