PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variability of Soil Properties in Eroded Agricultural Landscape

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Erosion strongly influences the soil properties and affects the intra-field variation of nutrients not only in steep young morainic landscapes but also on gentle slopes of old-glacial landscapes. The aim of the study was the evaluation of changes in the plant-available nutrient contents in the complex old-glacial eroded landscape of the Bielska Plain in the north-eastern part of Poland. The soil samples were collected from the soil profiles located along the transect beginning on the flat summit of the kame hummock extending through south-facing convex slope, the toeslope and footslope and further through the north-facing uniform slope. The content of plant-available forms of phosphorus (Pdl) and potassium (Kdl) and mineral forms of nitrogen (NH4-N and NO3-N) were determined in every soil profile. The soils located in various landscape positions were characterized with different fertility. In the soil located on the toeslope the content of NO3-N, Pdl and Kdl was high, while the soil located on the summit was rich in NH4-N and poor in the plant-available forms of K and P. The erosional distribution of plant-available N, P and K enhances the variation of nutrient content within one field and contributes to high variability of crops.
Słowa kluczowe
Rocznik
Strony
72--80
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
  • Department of Agri-Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
  • Department of Agri-Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
  • 1. Arnhold S., Lindner S., Lee B., Martin E., Kettering J., Nguyen T.T., Koellner T., Ok Y.S., Huwe B. 2014. Conventional and organic farming: Soil erosion and conservation potential for row crop cultivation. Geoderma, 219–220, 89–105.
  • 2. Banasik K., Górski D. 2000. Estimating the rainfall erosivity for East and Central Poland. Proc. I CD Hydroscience and Engineering, Seul, Korea, Sept. 26–29.2000.
  • 3. Blanco-Canqui H., Lal R. 2008. Principles of soil conservation and management. Springer, Dordrecht Heidelberg London NewYork.
  • 4. Cavalli D., Corti M., Baronchelli D., Bechini L., Marino Gallina P. 2017. CO2 emissions and mineral nitrogen dynamics following application to soil of undigested liquid cattle manure and digestates. Geoderma, 308, 26–35.
  • 5. Cheng Y., Li P., Xu G., Li Z., Gao H., Zhao B., Wang T., Wang F., Cheng S. 2018. Effects of soil erosion and land use on spatial distribution of soil total phosphorus in a small watershed on the Loess Plateau, China. Soil & Tillage Research, 184, 142–152.
  • 6. Cisilino F., Bodini A., Zanoli A. 2019. Rural development programs’ impact on environment: An ex-post evaluation of organic farming. Land Use Policy, 85, 454–462.
  • 7. Czubaszek R. 2019. Exchange of carbon dioxide between the atmosphere and the maize field fertilized with digestate from agricultural biogas plant. Journal of Ecological Engineering, 20(1), 145–151.
  • 8. Czubaszek R., Wysocka-Czubaszek A. 2018. Emissions of carnon dioxide and methane from fields fertilized with digestate from an agricultural biogas plant. International Agrophysics, 32, 29–37.
  • 9. EC, European Commission 2006. Thematic strategy for soil protection. Impact assessment of the thematic strategy on soil protection. Document accompanying the communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. Commission staff working document. COM(2006)231 final, SEC(2006)1165.
  • 10. Eghball B., Wienhold B.J., Gilley J.E., Eigenberg R.A. 2002. Mineralization of manure nutrients. Journal of Soil and Water Conservation, 57(6), 470–473.
  • 11. Feber R.E., Johnson P.J., Bell J.R., Chamberlain D.E., Firbank L.G., Fuller R.J., Manley W., Mathews F., Norton L.R., Townsend M., Macdonald D.W. 2015. Organic Farming: Biodiversity Impacts Can Depend on Dispersal Characteristics and Landscape Context, PLoS One 10(8) doi: 10.1371/journal.pone.0135921; https://journals.plos.org/ plosone/
  • 12. article?id=10.1371/journal.pone.0135921.
  • 13. Górniak A. 2000. The climate of the Podlaskie Voivodeship [In Polish]. IMGW, Białystok.
  • 14. Govers G., Lobb D.A., Quine T.A. 1999. Preface – tillage erosion and translocation: emergence of a new paradigm in soil erosion research. Soil & Tillage Research, 51(3–4), 167–174.
  • 15. Govers G., Vandaele K., Desmet P., Poesen J., Bunte K. 1994. The role of tillage in soil redistribution on hillslopes. European Journal of Soil Science, 45, 469–478.
  • 16. Halde C., Bamford K.C., Entz M.H. 2015. Crop agronomic performance under a six-year continuous organic no-till system and other tilled and conventionally-managed systems in the northern Great Plains of Canada. Agriculture, Ecosystems and Environment, 213, 121–130.
  • 17. Lal R. 2019. Accelerated soil erosion as a source of atmospheric CO2. Soil & Tillage Research, 188, 35–40.
  • 18. Lee K.S., Choe Y.C. 2019. Environmental performance of organic farming: Evidence from Korean small-holder soybean production. Journal of Cleaner Production, 211, 742–748.
  • 19. Li F., Zhang J., Su Z. 2012. Changes in SOC and Nutrients under Intensive Tillage in Two Types of Slope Landscapes. Journal of Mountain Science, 9, 67–76.
  • 20. Li S., Lobb D.A., Lindstrom M.J., Farenhorst A. 2008. Patterns of water and tillage erosion on topographically complex landscapes in the North American Great Plains. Journal of Soil and Water Conservation, 63(1), 37–46.
  • 21. Lu J., Bai Z., Velthof G.L., Wu Z., Chadwick D., Ma L. 2019. Accumulation and leaching of nitrate in soils in wheat-maize production in China. Agricultural Water Management, 212, 407–415.
  • 22. Maćkowiak C., Żebrowski J. 2000. Chemical composition of farmyard manure in Poland [In Polish]. Nawozy i Nawożenie 4(5), 119–130.
  • 23. Morvan X., Verbeke L., Laratte S., Schneider A.R. 2018. Impact of recent conversion to organic farming on physical properties and their consequences on runoff, erosion and crusting in a silty soil. Catena, 165, 398–407.
  • 24. Mycielska-Dowgiałło E., Pękalska A., Woronko B. 1995. The evolution of a marginal forms and kames in the region of Bielsk Podlaski. Quaestionare Geographica, 4, 215–222.
  • 25. Nascimbene J., Marini L., Paoletti M.G. 2012. Organic Farming Benefits Local Plant Diversity in Vineyard Farms Located in Intensive Agricultural Landscapes. Environmental Management, 49, 1054–1060.
  • 26. Panagos P., Borrelli P., Poesen J., Ballabio C., Lugato E., Meusburger K., Montanarella L., Alewell C. 2015. The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438–447.
  • 27. Panagos P., Imeson A., Meusburger K., Borrelli P., Poesen J., Alewell C. 2016. Soil conservation in Europe: wish or reality? Land Degradation & Development, 27(6), 1547–1551.
  • 28. Rakotovololona L., Beaudoin N., Ronceux A., Venet E., Mary B. 2019. Driving factors of nitrate leaching in arable organic cropping systems in Northern France. Agriculture, Ecosystems and Environment, 272, 38–51.
  • 29. Rütting T., Aronsson H., Delin S. 2018. Efficient use of nitrogen in agriculture. Nutrient Cycling in Agroecosystems, 110, 1–5.
  • 30. Sartori M., Philippidis G., Ferrari E., Borrelli P., Lugato E., Montanarella L., Panagos P. 2019. A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion. Land Use Policy, 86, 299–312.
  • 31. Seidel R., Moyer J., Nichols K., Bhosekar V. 2017. Studies on long-term performance of organic and conventional cropping systems in Pennsylvania. Organic Agriculture, 7, 53–61.
  • 32. Sharpley A.N., McDowell R.W., Kleinman P.J.A. 2004. Amount, forms and solubility of phosphorus in soils receiving manure. Soil Science Society of America Journal, 68, 2048–2057.
  • 33. SSSP 2011. Soil Science Society of Poland, Polish soil classification [In Polish]. Roczniki Gleboznawcze, 62(3).
  • 34. Sui Y., Ou Y., Yan B., Xu X., Rousseau A. N., Zhang Y. 2016. Assessment of micro-basin tillage as a soil and water conservation practice in the Black Soil Region of Northeast China. PLoS ONE 11(3), e0152313. doi:10.1371/journal.pone.0152313, https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152313
  • 35. Tuck S.L., Winqvist C., Mota F., Anström J., Turnbull L.A., Bengtsson J. 2014. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. Journal of Applied Ecology, 51, 746–755.
  • 36. Tuomisto H.L., Hodge I.D., Riordan P., Macdonald D.W. 2012. Does organic farming reduce environmental impacts? – A meta-analysis of European research. Journal of Environmental Management, 112, 309–320.
  • 37. Van Oost K., Govers G., De Alba S., Quine T.A. 2006. Tillage erosion: a review of controlling factors and implications for soil quality. Progress in Physical Geography, 30, 443–466.
  • 38. Verheijen F.G.A., Jones R.J.A., Rickson R.J., Smith C.J. 2009. Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews, 94, 23–38.
  • 39. Vieira D.A.N., Dabney S.M. 2011. Modeling edge effects of tillage erosion. Soil & Tillage Research, 111, 197–207.
  • 40. Wang X., Jelinski N.A., Toner B., Yoo K. 2019. Long-term agricultural management and erosion change soil organic matter chemistry and association with minerals. Science of the Total Environment, 648, 1500–1510.
  • 41. Wawer R., Nowocień E., Podolski B. 2010. Actual water erosion risk in Poland based upon Corine Land Cover 2006. Electronic Journal of Polish Agricultural Universities, 13(2), http://www.ejpau.media.pl/volume13/issue2/art-13.html.
  • 42. Wysocka-Czubaszek A. 2012. Morphology and chemical properties of plough horizons of soils in various slope positions. Polish Journal of Soil Science, 45 (1), 69–82.
  • 43. Wysocka-Czubaszek A., Czubaszek R. 2014. Quantification of water erosion rates on the Narew river valley-sides using Universal Soil Loss Equation. Polish Journal of Soil Science, 47(1), 1–16.
  • 44. Wysocka-Czubaszek A., Czubaszek R., Roj-Rojewski S. 2018. Variability of soil properties of eroded hillslopes in rolling old glacial landscape. Electronic Journal of Polish Agricultural Universities, 21(3), http://www.ejpau.media.pl/volume21/issue3/art02.html
  • 45. Xiaojun N., Xiaodan W., Suzhen L., Shixian G., Haijun L. 2010. 137Cs tracing dynamics of soil erosion, organic carbon and nitrogen in sloping farmland converted from original grassland in Tibetan plateau. Applied Radiation and Isotopes, 68, 1650–1655.
  • 46. Xiong M., Sun R., Chen L. 2019. A global comparison of soil erosion associated with land use and climate type. Geoderma, 343, 31–39.
  • 47. Xu G., Li Z., Li P., Zhang T., Cheng S. 2014. Spatial variability of soil available phosphorus in a typical watershed in the source area of the middle Dan River, China. Environmental Earth Sciences, 71, 3953–3962.
  • 48. Zhang J.H., Nie X.J., Su Z.A. 2008. Soil profile properties in relation to soil redistribution by intense tillage on a steep hillslope. Soil Science Society of America Journal, 72(6), 1767–1773.
  • 49. Zhang X., Li Z., Zeng G., Xia X., Yang L., Wu J. 2012. Erosion effects on soil properties of the unique red soil hilly region of the economic development zone in southern China. Environmental Earth Sciences, 67, 1725–1734.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c91c769-f2d4-4a6f-9531-4d33d71d6b4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.