PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sedimentary evidence of extreme storm surge or tsunami events in the southern Baltic Sea (Rogowo area, NW Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Baltic Sea is not typically considered as an area affected by tsunamis. However, during the Late Pleistocene and Holocene several tsunami events have been interpreted from the sedimentary record, mainly in Sweden and Estonia. Furthermore, on the southern coast of the Baltic Sea, there are historical accounts of catastrophical marine floodings called “der Seebär” (“the Sea Bear”). Their descriptions reveal many features typical for tsunami, but their genesis remained unknown and sedimentary evidence for such events has not been found. Here we provide evidence of sandy event layers from the area of Rogowo, NW Poland – the area of historical catastrophic storms as well as “der Seebär” events. The study area is a low-lying coastal plain with an average elevation of –0.5 to +0.5 m a.s.l., protected from the open sea by beach and coastal dune systems up to 5 m high. Sedimentological, micropalaeontological and geochemical analyses along with AMS 14C dating were applied to sedimentary successions seen in 5 major trenches and 198 sediment cores up to 1.5 m long. Two sandy layers were identified in the peat deposits that developed on the plain during the last ~2000 years. They reveal a number of typical features of tsunami deposits (significant lateral extent and thickness, rip-up clasts, chemical and micropalaeontological evidence of marine origin), however, 14C dating along with the historical accounts revealed that the major layer, extending at least 1.2 km from the modern coasts, was probably deposited by arguably the largest storm surge during the last 2000 years, which took place in 1497 AD. These storm deposits were likely formed during inundation of the low-lying coastal plain after major breaching of coastal dunes resulting in tsunami – like flow pattern and thus similar sedimentological effects. A discontinuous sand layer of younger age (18th century) and sharing similar properties to the previous one may be related to “der Seebär” event or another storm surge. The study revealed that the southern Baltic Sea coast may be affected by much greater coastal flooding than known from more recent accounts and observations. Thus, the presented geological record should be taken as an example of a worst-case scenario in coastal zone risk assessment from natural hazards. These events left sedimentary deposits that resemble tsunami deposits. It is likely that, in similar settings where storm surges cause unidirectional inundation of a coastal plain, it may not be possible to establish whether the resulting deposits were laid down from storms or tsunamis.
Rocznik
Strony
973--986
Opis fizyczny
Bibliogr. 88 poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute - National Research Institute, Pomeranian Branch, Wieniawskiego 20, 71-130 Szczecin, Poland
  • Adam Mickiewicz University in Poznań, Institute of Geology, Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
autor
  • Polish Geological Institute - National Research Institute, Pomeranian Branch, Wieniawskiego 20, 71-130 Szczecin, Poland
autor
  • Polish Geological Institute - National Research Institute, Pomeranian Branch, Wieniawskiego 20,71-130 Szczecin, Poland
  • Adam Mickiewicz University in Poznań, Institute of Geoecology and Geoinformation, Bogumiła Krygowskiego 10, Poznań 61-680, Poland
  • Polish Geological Institute - National Research Institute, Marine Geology Branch, Kościerska 5, 80-328 Gdańsk, Poland
Bibliografia
  • 1. Andrade, C., 1992. Tsunami generated forms in the Algarve barrier islands. Science of Tsunami Hazards, 10: 21-33.
  • 2. Averkiev, A.S., Klevannyy, K.A., 2007. Determining cyclone trajectories and velocities leading to extreme sea level rises in the Gulf of Finland. Russian Meteorology Hydrology, 32: 514-519.
  • 3. Averkiev, A.S., Klevannyy, K.A., 2010. A case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland. Continental Shelf Research, 30: 707-714.
  • 4. Battarbee, R.D., 1986. Diatom analysis. In: Handbook of Holocene Paleoecology and Paleohydrology (ed. B.E. Berglund): 527-570. John Wiley and Sons.
  • 5. Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes Landforms, 26: 1237-1248.
  • 6. Bourgeois, J., 2009. Geologic effects and records of tsunamis. In: The Sea. Tsunamis, 15 (eds. A.R. Robinson and E.N. Bernard): 55-91. Harvard University Press, Cambridge, USA.
  • 7. Brüggemann, L.W., 1779. Ausfuerliche Beschreibung des Gegenwärtiges Zustandes des Koeniglieschen Preußischen Herzogtums Vor- und Hinterpommern. Stettin.
  • 8. Cedro, B. ed., 2012. Późnoglacjalne i holoceńskie przemiany środowiska przyrodniczego zarejestrowane w osadach profilu T28 z okolic Mrzeżyna na podstawie badań wielodyscyplinarnych (in Polish). Przedsiębiorstwo Produkcyjno-Handlowe ZAPOL Dmochowski, Sobczyk Sp.j.
  • 9. Chagué-Goff, C., 2010. Chemical signatures of paleotsunamis: a forgotten proxy? Marine Geology, 271: 67-71.
  • 10. Chagué-Goff, C., Schneider, J.-L., Goff, J.R., Dominey-Howes, D., Strotz, L., 2011. Expanding the proxy toolkit to help identify past events - lessons from the 2004 Indian Ocean Tsunami and the 2009 South Pacific Tsunami. Earth-Science Reviews, 107: 107-122.
  • 11. Chagué-Goff, C., Niedzielski, P., Wong, H.K.Y., Szczuciński, W., Sugawara, D., Goff, J., 2012. Environmental impact assessment of the 2011 Tohoku-oki tsunami on the Sendai Plain. Sedimentary Geology, 282: 175-187.
  • 12. Chagué-Goff, C., Szczuciński, W., Shinozaki, T., 2017. Applications of geochemistry in tsunami research: a review. Earth-Science Reviews, 165: 203-244.
  • 13. Credner, R., 1889. Über den „Seebär“ der westlichen Ostsee vom 16/17 Mai 1888. Jahrbuch der Geographischen Gesellschaft Greifswald, R.3.
  • 14. Denys, L., 1991. A checklist of the diatoms in the Holocene deposits of the western Belgian coastal plain with a survey of their apparent ecological requirements. Belgische Geologische Dienst, Professional Paper, 1991/2: 246.
  • 15. Dobracka, E., 1990. Szczegółowa mapa geologiczna Polski 1:50000, arkusz Trzebiatów (78) (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 16. Dobracka, E., 1992. Objaśnienie do Szczegółowej mapy geologicznej Polski w skali 1:50 000, arkusz Trzebiatów (78) (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 17. Dobracki, R., Zachowicz, J., 1997. Mapa geodynamiczna polskiej strefy brzegowej Bałtyku południowego w skali 1:10 000 arkusze Mrzeżyno i Dźwirzyno (in Polish). Państwowy Instytut Geologiczny, Szczecin.
  • 18. Dominay-Howes, D.T.M., Humphreys, G.S., Hesse, P.P., 2006. Tsunami and palaeotsunami depositional signatures and their potential value in understanding the late-Holocene tsunami record. The Holocene, 16: 1095-1107.
  • 19. Dziadziuszko, Z., Jednoral, T., 1996. Flooding threat caused by storm surges at the coast of Baltic Sea and Vistula Lagoon (in Polish with English summary). Wiadomości Instytutu Meteorologii i Gospodarki Wodnej, 19: 123-133.
  • 20. Folk, R.L., Ward, W.C, 1957. Brazos River bar, a study of significance of grain size parameters. Journal of Sedimentary Petrology, 27: 3-26.
  • 21. Gałka, M., Miotk-Szpiganowicz, G., Goslar, T., Jęśko, M., van der Knaap, W.O., Lamentowicz, M., 2013. Palaeohydrology, fires and vegetation succession in the southern Baltic during the last 7500 years reconstructed from a raised bog based on multi-proxy data. Palaeogeography, Palaeoclimatology, Palaeoecology, 370: 209-221.
  • 22. Goff, J., McFadgen, B.G., Chagué-Goff, C., 2004. Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand. Marine Geology, 204: 235-250.
  • 23. Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B., Dominey-Howes, D., 2012. Progress in palaeotsunami research. Sedimentary Geology, 243-244: 70-88.
  • 24. Goto, K., Kawana, T., Imamura, F., 2010. Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth-Science Reviews, 102: 77-99.
  • 25. Goto, K., Fujino, S., Sugawara, D., Nishimura, Y., 2014. The current situation of tsunami geology under new policies for disaster countermeasures in Japan. Episodes, 37: 258-264.
  • 26. Gurwell, B., 2008. Coastal protection along the Baltic Sea coast - Mecklenburg-Vorpommern. Die Küste, 74: 179-188.
  • 27. Hällfors, G., 2004. Checklist of Baltic Sea phytoplankton species (including some heterotrophic protistan groups). Baltic Sea Environment Proceedings, 95.
  • 28. Hua, Q., Barbetti, M., Rakowski, A.Z., 2013. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon, 55: 2059-2072.
  • 29. Hupfer, P., Harff, J., Sterr, H., Stigge, H.J., 2003. Wasserstände an der Ostsee Küste. Die Küste, 66: 4-331.
  • 30. Jankaew, K., Atwater, B., Sawai, Y., Choowong, M., Charoentitirat, T., Martin, M., Prendergast, A., 2008. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature, 455: 1228-1231.
  • 31. Jensen, J., Müller-Navarra, S.H., 2008. Storm surges on the German Coast. Die Küste, 74: 92-124.
  • 32. Kortekaas, S., 2002. Tsunamis, storms, and earthquakes: distinguishing coastal flooding events. Ph.D. thesis, Coventry University, UK.
  • 33. Kortekaas, S., Dawson, A.G., 2007. Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. Sedimentary Geology, 200: 208-221.
  • 34. Krzymiński, W., Kruk-Dowgiałło, L., Zawadzka-Kahlau, E., Dubrawski, R., Kamińska, M., Lysiak-Pastuszak, E., 2004. Typology of Polish marine waters. Coastline Reports, 4: 39-48.
  • 35. Kulhanek, O., Persson, L., 2011. Macroseismic observations of Swedish earthquakes from 1375 to 2000. SGU (Geological Survey of Sweden) Research Paper, C 837.
  • 36. Lario, J., Luque, L., Zazo, C., Goy, J.L., Spencer, Ch., Cabero, A., Bardaji, T., Borja, F., Dabrio, C.J., Civis, J., Gonzalez-Delgado, J.A., Borja, C., Alonso-Azcarate, J., 2010. Tsunami vs. storm surge deposits: a review of the sedimentological and geomorphological records of extreme wave events (EWE) during the Holocene in the Gulf of Cadiz, Spain. Zeitschrift fur Geomorphologie, 54, Suppl., 3: 301-316.
  • 37. Lecointe, C., Coste, M., Prygiel, J., 1993. "OMNIDIA": software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia, 269/270: 509-513.
  • 38. Lecointe, C., Coste, M., Prygiel, J., Ector, L., 1999. Le logiciel OMNIDIA version 3, une puissante base de données pour les inventaires de diatomées et pour le calcul des diatomiques européens. Cryptogamie Algologie, 20: 132-134.
  • 39. Luque, L., Zazo, C., Lario, J., Goy, J.L., Civis, J., Lopez-Gonzales, F.M., Silva, P.G., Dabrio, C.J., 2004. El efecto del tsunami de 1755 en el litoral de Conil de la Frontera (Cadiz). Zona Arqueologica, 4. Miscelanea en Homenaje a Emiliano Aguirre. V-I, Geologia: 72-82.
  • 40. Majewski, A., 1986. Extreme water level fluctuations along the Baltic coast (in Polish with English summary). Inżynieria Morska, 2: 46-50.
  • 41. Majewski, A., 1989. Unusually short-lived sea water level oscillations on the southern and eastern coasts of the Baltic Sea (in Polish with English summary). Przegląd Geofizyczny, 34: 191-199.
  • 42. Majewski, A., 1998a. The highest storm surges along the southern coast of the Baltic Sea (in Polish with English summary). Wiadomości Instytutu Meteorologii i Gospodarki Wodnej, 21: 81-98.
  • 43. Majewski, A., 1998b. Disastrous storms and floods on southern coasts of the Baltic Sea (in Polish with English summary). Inżynieria Morska i Geotechnika, 2: 67-69.
  • 44. Matsumoto, D., Sawai, Y., Yamada, M., Namegaya, Y., Shinozaki, T., Takeda, D., Fujino, S., Tanigawa, K., Nakamura, A., Pilarczyk, J.E., 2016. Erosion and sedimentation during the September 2015 flooding of the Kinu River, central Japan. Scientific Reports, 6, Article number: 34168. doi:10.1038/srep34168
  • 45. Medvedev, I.P., Rabinovich, A.B., Kulikov, E.A., 2013. Tidal oscillations in the Baltic Sea. Oceanology, 53: 526-538.
  • 46. Mörner, N.A., 1995. The Baltic Ice Lake - Yoldia Sea transition. Quaternary International, 27: 95-98.
  • 47. Mörner, N.A., 1996. Liquefaction and varve disturbance as evidence of paleoseismic events and tsunamis, the autumn 10 430 BP event in Sweden. Quaternary Science Reviews, 15: 939-948.
  • 48. Mörner, N.A., 1999. Paleo-tsunamis in Sweden. Physics and Chemistry of the Earth, 24: 443-448.
  • 49. Mörner, N.A., 2003. Paleoseismity of Sweden - a Novel Paradigm. Stockholm University, Stockholm.
  • 50. Mörner, N.A., 2008. Tsunami events within the Baltic. Polish Geological Special Papers, 23: 71-76.
  • 51. Mörner, N.A., 2013. Drainage varves, seismites and tsunamites in the Swedish varve chronology. GFF, 135: 308-315.
  • 52. Mörner, N.A., Dawson, S., 2011. Traces of tsunami events in off- and on-shore environments. Case studies in the Maldives, Scotland and Sweden. In: The Tsunami Threat - Research and Technology (ed. N.A. Mörner): 371-388. InTech.
  • 53. Morton, R.A., Sallenger, A.H. Jr., 2003. Morphological impacts of extreme storms on sandy beaches and barriers. Journal of Coastal Research, 19: 560-573.
  • 54. Morton, R.A., Gelfenbaum, G., Jaffe, B.E., 2007. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sedimentary Geology, 200: 184-207.
  • 55. Nanayama, F., Shigeno, K., Satake, K., Shimokawa, K., Koitabashi, S., Miyasaka, S., Ishii, M., 2000. Sedimentary differences between the 1993 Hokkaido-nansei-oki tsunami and the 959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sedimentary Geology, 135: 255-264.
  • 56. Nikonov, A.A., 2004. Evidence of paleotsunami in the early Holocene Lake Kunda (southern coast of the Gulf of Finland). Doklady Earth Sciences, 396: 477-480.
  • 57. Pellikka, H., Rauhala, J., Kahma, K.K., Stipa, T., Boman, H., Kangas, A., 2014. Recent observations of meteotsunamis on the Finnish coast. Natural Hazards, 74: 197-215.
  • 58. Peters, R., Jaffe, B., 2010. Identification of Tsunami Deposits in the Geologic Record: Developing Criteria Using Recent Tsunami Deposits. US Geological Survey Open-File Report: 2010-1239.
  • 59. Piotrowski, A., 2007a. Tsunami events in Kołobrzeg in the light of historical evidences. Biuletyn Państwowego Instytutu Geologicznego, 424: 73.
  • 60. Piotrowski, A., 2007b. Tsunami AD 1497. Biuletyn Państwowego Instytutu Geologicznego, 424: 77.
  • 61. Reimer, P.J., Bard, E., Bayliss, A., Warren Beck, J., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedriech, M., Grootes, P.M., Giuilderson, T.P., Hafilidason, H., Hajdas, I., Hatte, C., Heaton, T.J., Hoffman, D.L., Hogg, A.G., Hughen, A.G., Kaiser, A.K., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Sothon, J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J., 2013. INTCAL13 and Marine13 radiocarbon age calibration curves 0-50 000 years cal BP. Radiocarbon, 55: 1869-1887.
  • 62. Richmond, B., Szczuciński, W., Chagué-Goff, C., Goto, K., Sugawara, D., Witter, R., Tappin, D.R., Jaffe, B., Fujino, S., Nishimura, Y., Goff, J., 2012. Erosion, deposition and landscape change on the Sendai coastal plain, Japan, resulting from the March 11, 2011 Tohoku-oki tsunami. Sedimentary Geology, 282: 27-39.
  • 63. Richter, A., Groh, A., Dietrich, R., 2012. Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region. Physics and Chemistry of the Earth Pt., A/B/C: 43-54.
  • 64. Riemann, H., 1873. Geschichte der Stadt Kolberg. Karl Jancke Verlag.
  • 65. Rosenhagen, G., Bork, I., 2009. Rekonstruktion der Sturmflutfwetterlage vom 13. November 1872. Die Küste, 75: 51-70.
  • 66. Rotnicki, K., Rotnicka, J., Goslar, T., Wawrzynniak-Wydrowska, B., 2016. The first geological record of a palaeotsunami on the southern coast of the Baltic Sea, Poland. Geological Quarterly 60 (2): 417-440.
  • 67. Rudowski, S., Wróblewski, R., 2000. Sedimentary structure of the storm surge washover fan on the Lake Bukowo spit. Oceanological Studies, 29: 101-107.
  • 68. Shiki, T., Tachibana, T., Fujiwara, O., Goto, K., Nanayama, F., Yamazaki, T., 2008. Characteristic features of tsunamiites. In: Tsunamiites - Features and Implications (eds. T. Shiki, Y. Tsuji, T. Yamasaki and K. Minoura): 319-340, Elsevier.
  • 69. Skolasińska, K., Szczuciński, W., Mitręga, M., Jagodziński, R., Lorenc, S., 2015. Sedimentary record of 2010 and 2011 Warta River seasonal floods in the region of Poznań, Poland. Geological Quarterly, 59 (1): 47-60.
  • 70. Soria, J.L.A., Switzer, A.D., Pilarczyk, J.E., Siringan, F.P., Khan, N.S., Fritz, H.M., 2017. Typhoon Haiyan overwash sediments from Leyte Gulf coastlines show local spatial variations with hybrid storm and tsunami signatures. Sedimentary Geology, 358: 121-138.
  • 71. Starkel, L., Michczyńska, D., Krąpiec, M., Margielewski, W., Nalepka, D., Pazdur, A., 2013. Progress in the Holocene chrono-climatostratigraphy of Polish territory. Geochronometria, 40: 1-21.
  • 72. Stigge, H.J., 1994. Die Wasserstande an der Küste Mecklenburg-Vorpommern. Die Küste, 56: 1-24.
  • 73. Stoewer, R., 1897. Geschichte der Stadt Kolberg. C. F. Post'schen Buchhandlung und Buchdruckerei.
  • 74. Stuiver, M., Reimer, P.J., Reimer, R.W., 2016. CALIB 7.1 (WWW program) at http://calib.org, accessed 2016-12-2.
  • 75. Suursaar, U., Kullas, T., Otsmann, M., Kouts, T., 2003. Extreme sea level events in the coastal waters of western Estonia. Journal of Sea Research, 49: 295-303.
  • 76. Suursaar, U., Kullas, T., Otsmann, M., Saaremae, I., Kuik, J., Merilain, M., 2006. Cyclone Gudrun in January 2005 and modeling its hydrodynamic consequences in the Estonian coastal waters. Boreal Environment Research, 11: 143-159.
  • 77. Switzer, A.D., 2008. 20 years of paleotsunami studies on coastal sandsheets - a review. 2nd International Tsunami Field Symposium. IGCP Project 495. GI2S Coast Research Publication, 6: 163-165.
  • 78. Switzer, A.D., Jones, B.G., 2008. Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: sea-level change, tsunami or exceptionally large storm? The Holocene, 18: 787-803.
  • 79. Szczuciński, W., 2012. The post-depositional changes of the onshore 2004 tsunami deposits on the Andaman Sea coast of Thailand. Natural Hazards, 60: 115-133.
  • 80. Szczuciński, W., Kokociński, M., Rzeszewski, M., Chagué-Goff, C., Cachao, M., Goto, K., Sugawara, D., 2012a. Sediment sources and sedimentation processes of 2011 Tohoku-oki tsunami deposits on the Sendai Plain, Japan - insights from diatoms, nannoliths and grain size distribution. Sedimentary Geology, 282: 40-56.
  • 81. Szczuciński, W., Rachlewicz, G., Chaimanee, N., Saisuttichai, D., Tepsuwan, T., Lorenc, S., 2012b. 26 December 2004 tsunami deposits left in areas of various tsunami runup in coastal zone of Thailand. Earth, Planets and Space, 64: 843-858.
  • 82. Szczuciński, W., Pawłowska, J., Lejzerowicz, F., Nishimura, Y., Kokociński, M., Majewski, W., Nakamura, Y., Pawlowski, J., 2016. Ancient sedimentary DNA reveals past tsunami deposits. Marine Geology, 381 : 29-33.
  • 83. Tappin, D.R., Evans, H., Jordan, C.J., Richmond, B., 2012. Coastal changes from the impact of the 2011 Tohoku-oki tsunami: interpretations of time series satellite images, helicopter-borne video footage and field observations. Sedimentary Geology, 282: 151-174.
  • 84. Tuttle, M.P., Ruffman, A., Anderson, T., Jeter, H., 2004. Distint guishing tsunami from storm deposits in eastern North America: the 1929 Grand Banks tsunami versus the 1991 Halloween storm. Seismological Research Letters, 75: 117-131.
  • 85. Van Dam, H., Mertens, A., Sineldam, J., 1994. A coded checklist and ecological indicator values of freshwater diatom from the Netherlands. Netherlands Journal of Aquatic Ecology, 28: 117-133.
  • 86. Williams, H.F.L., 2015. Contrasting styles of Hurricane Irene washover sedimentation on three east coast barrier islands: Cape Lookout, North Carolina; Assateague Island, Virginia; and Fire Island, New York. Geomorphology, 231: 182-192.
  • 87. Wiśniewski, B., Wolski, T., 2009. Katalogi wezbrań i obniżeń sztormowych poziomów morza oraz ekstremalne poziomy wód na polskim wybrzeżu (in Polish). Wydawnictwo Naukowe Akademii Morskiej, Szczecin.
  • 88. Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H., Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., Lydeikaite, Z., 2014. Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia, 56: 259-290.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c8e9222-01f5-43ec-8477-bf00c5d2a2a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.