Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The effect of initial frequency chirp is numerically investigated to obtain high-efficient supercontinuum radiation in photonic crystal fibers with two closely spaced zero-dispersion wavelengths. Our results show that the positive chirp can significantly improve the probability of energy transferred from the soliton to the dispersive wave. And with the increase of the chirp, the energy increases obviously. At the same time, the intensity of the dispersive wave is proportional to the chirp value. Especially, solitons will not appear when the chirp value exceeds 3.9. Therefore, choosing an appropriate positive chirp, we can regulate the energy of the dispersive wave and solitons in photonic crystal fibers.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
75--85
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
- Key laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
autor
- Key laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
autor
- Key laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
autor
- Key laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
Bibliografia
- [1] RANKA J.K., WINDELER R.S., STENTZ A.J., Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm, Optics Letters 25(1), 2000, pp. 25–27.
- [2] RUSSELL P.J., Photonic crystal fibers, Science 299(5605), 2003, pp. 358–362.
- [3] KNIGHT J.C., Photonic crystal fibers, Nature 424(17), 2003, pp. 847–851.
- [4] REEVES W.H., SKRYABIN D.V., BIANCALANA F., KNIGHT J.C., RUSSELL P.ST.J., OMENETTO F.G., EFIMOV A., TAYLOR A.J., Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers, Nature 424(6948), 2003, pp. 511–515.
- [5] DUDLEY J.M., GENTY G., COEN S., Supercontinuum generation in photonic crystal fiber, Reviews of Modern Physics 78(4), 2006, pp. 1135–1184.
- [6] AGRAWAL G.P., Nonlinear Fiber Optics, 4th Ed., Academic Press, 2007.
- [7] DEMIRCAN A., PIETRZYK M., BANDELOW U., Effects of higher-order dispersion on pulse splitting in the normal dispersion regime, Optical and Quantum Electronics 40(5–6), 2008, pp. 455–460.
- [8] TAYLOR J.R., Supercontinuum Generation in Optical Fibers, Cambridge University, London, 2010.
- [9] SKRYABIN D.V., YULIN A.V., Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers, Physical Review E 72(1), 2005, article ID 016619.
- [10] GORBACH A.V., SKRYABIN D.V., STONE J.M., KNIGHT J.C., Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum, Optics Express 14(21), 2006, pp. 9854–9863.
- [11] CHU LIU, REES E.J., LAURILA T., SHUISHENG JIAN, KAMINSKI C.F., Periodic interaction between solitons and dispersive waves during the generation of non-coherent supercontinuum radiation, Optics Express 20(6), 2012, pp. 6316–6324.
- [12] TRAVERS J.C., RULKOV A.B., CUMBERLAND B.A., POPV S.V., TAYLOR J.R., Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser, Optics Express 16(19), 2008, pp. 14435–14447.
- [13] HILL S., KUKLEWICZ C.E., LEONHARDT U., KÖNIG F., Evolution of light trapped by a soliton in a microstructured fiber, Optics Express 17(16), 2009, pp. 13588–13601.
- [14] FROSZ M.H., FALK P., BANG O., The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength, Optics Express 13(16), 2005, pp. 6181–6192.
- [15] GENTY G., LEHTONEN M., LUDVIGSEN H., Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses, Optics Express 12(19), 2004, pp. 4614–4624.
- [16] ROY S., BHADRA S.K., AGRAWAL G.P., Perturbation of higher-order solitons by fourth-order dispersion in optical fibers, Optics Communications 282(18), 2009, pp. 3798–3803.
- [17] DAJUN LEI, HUI DONG, SHUANGCHUN WEN, HUA YANG, Manipulating dispersive wave generation by frequency chirp in photonic crystal fibers, Journal of Lightwave Technology 27(20), 2009, pp. 4501–4507.
- [18] HUA YANG, FANG HAN, HUI HU, WEIBIN WANG, QILIN ZENG, Spectral-temporal analysis of dispersive wave generation in photonic crystal fibers of different dispersion slope, Journal of Modern Optics 61(5), 2014, pp. 409–414.
- [19] SAILI ZHAO, HUA YANG, NENGSONG CHEN, CHUJUN ZHAO, Controlled generation of high-intensity optical rogue waves by induced modulation instability, Scientific Reports 7, 2017, article ID 39926.
- [20] SAILI ZHAO, HUA YANG, CHUJUN ZHAO, YUZHE XIAO, Harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fiber, Optics Express 25(7), 2017, pp. 7192–7202.
- [21] WEIBIN WANG, HUA YANG, PINGHUA TANG, CHUJUN ZHAO, JING GAO, Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths, Optics Express 21(9), 2013, pp. 11215–11226.
- [22] HUA YANG, QILIN ZENG, HUI HU, BOYAN WANG, WEIBIN WANG, Impact of chirp on soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths, Optics Communications 325, 2014, pp. 170–174.
- [23] JIAXIN YU, FUHONG CAI, YE WANG, ZHONG CHEN, JINGYUN HUANG, ZHIZHEN YE, JUN QIAN, Supercontinuum pulse measurement by KNbO3 nanoneedle based cross-correlation frequency-resolved optical gating (XFROG), Optical and Quantum Electronics 47(5), 2015, pp. 1083–1089.
- [24] BACHE M., BANG O., ZHOU B.B., MOSES J., WISE F.W., Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses, Optics Express 19(23), 2011, pp. 22557–22562.
- [25] LADÁNYI L., SCHOLTZ L., MÜLLEROVÁ J., Numerical simulations of dispersion effects in chirped Gaussian and soliton pulses, Optical and Quantum Electronics 49(3), 2017, article ID 105.
- [26] MUSSOT A., BEAUGEOIS M., BOUAZAOUI M., SYLVESTRE T., Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths, Optics Express 15(18), 2007, pp. 11553–11563.
- [27] HERRMANN J., GRIEBNER U., ZHAVORONKOV N., HUSAKOU A., NICKEL D., KNIGHT J.C., WADSWORTH W.J., RUSSELL P.ST.J., KORN G., Experimental evidence for supercontinuum generation by fission of higher-order solitonsin photonic fibers, Physical Review Letters 88(17), 2002, article ID 173901.
- [28] EFIMOV A., TAYLOR A.J., OMENETTO F.G., YULIN A.V., JOLY N.Y., BIANCALANA F., SKRYABIN D.V., KNIGHT J.C., RUSSELL P.ST.J., Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: experiment and modelling, Optics Express 12(26), 2004, pp. 6498–6507.
- [29] DUDLEY J.M., XUN GU, LIN XU, KIMMEL M., ZEEK E., O’SHEA P., TREBINO R., COEN S., WINDELER R.S., Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments, Optics Express 10(21), 2002, pp. 1215–1221.
- [30] TARTARA L., CRISTIANI I., DEGIORGIO V., Blue light and infrared continuum generation by soliton fission in a microstructured fiber, Applied Physics B 77(2–3), 2003, pp. 307–311.
- [31] HUA ZHANG, SONG YU, JIE ZHANG, WANYI GU, Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths, Optics Express 15(3), 2007, pp. 1147–1154.
- [32] SKRYABIN D.V., GORBACH A.V., Colloquium: looking at a soliton through the prism of optical supercontinuum, Reviews of Modern Physics 82(2), 2010, pp. 1287–1299.
- [33] EFIMOV A., YULIN A.V., SKRYABIN D.V., KNIGHT J.C., JOLY N., OMENETTO F.G., TAYLOR A.J., RUSSELL P., Interaction of an optical soliton with a dispersive wave, Physical Review Letters 95(21), 2005, article ID 213902.
- [34] KLAUS M., SHAW J.K., Influence of pulse shape and frequency chirp on stability of optical solitons, Optics Communications 197(4–6), 2001, pp. 491–500.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c88509b-9ced-4729-b718-bbac23d5ee0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.