Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Glycidylazide polymer (GAP) tetraol or tetra functional GAP (t-GAP) is a potential energetic binder, capable of exhibiting superior mechanical properties and better curing behaviour for application in high energy propellants. t-GAP is conventionally prepared through azidation of tetra functional poly-epichlorohydrin (t-PECH). Azidation reactions using a metal azide are known to be sensitive to temperature. The present study was aimed at a systematic evaluation of the safe temperature limit for the preparation of t-GAP and to derive optimized reaction conditions using a thermal screening unit (TSU), through both dynamic and isothermal heating experiments. The thermal hazard studies suggested that the azidation reaction is fairly stable at temperatures above 100 °C as it did not exhibit any abrupt rise in reaction temperature or pressure. The process was validated using laboratory scale batches and completion of the reaction was verified using FTIR spectroscopy.
Rocznik
Tom
Strony
282--297
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- High Energy Materials Research Laboratory, DRDO, Pune -411 021, India
autor
- High Energy Materials Research Laboratory, DRDO, Pune -411 021, India
autor
- High Energy Materials Research Laboratory, DRDO, Pune -411 021, India
autor
- High Energy Materials Research Laboratory, DRDO, Pune -411 021, India
autor
- Defence Institute of Advanced Technology, Pune -411 025, India
Bibliografia
- [1] Williams, F.A.; Barrere, M.; Huang, N.C. Fundamental Aspects of Solid Propellant Rockets. Technovision Services, No. 116, Slough, UK, 1969.
- [2] Explosives, Propellants & Pyrotechnics. (Bailey, C.M.; Hartley, F.; Lee, R.G.; Murray, S.G., Eds.) Brassey’s UK Ltd., 1989.
- [3] Perez, D.; Ramohalli, K. A Scientific Approach to Composite Propellant Processing. Proc. 26th AIAA/ ASME/SAE/ASEE, Joint Propulsion Conf., Orlando, 1990.
- [4] Kishore, K.; Sridhara, K. Solid Propellant Chemistry. DESIDOC, Defense R&D Organisation, 1999.
- [5] Folly, P.; Mäder, P. Propellant Chemistry. Chimia 2004, 58: 374-382.
- [6] Gharia, J.S.; Sinha, R.K.; Tadas, V.V.; Prakash, V.; Phadke, V.K. Studies on Physico-Mechanical and Explosive Characteristics of RDX/HMX Based Castable Plastic Bonded Explosives. Def. Sci. J. 1998, 48(1): 125-130; https://doi.org/10.14429/dsj.48.3877.
- [7] Antic, G.; Lasevic, V.D.; Stankovic, M.; Borkovic, Z. Explosive Characteristics of Cast PBX Based on HMX, Ammonium Perchlorate and Aluminium. Sci. Tech. Rev. 2004, 64(3-4): 38-44.
- [8] Kumar, A.S.; Rao, V.B.; Sinha, R.K.; Rao, A.S. Evaluation of Plastic Bonded Explosive (PBX) Formulations Based on RDX, Aluminum, and HTPB for Underwater Applications. Propellants Explos., Pyrotech. 2010, 35(4): 359-364; https://doi.org/10.1002/prep.200800048.
- [9] Muthiah, R.M.; Manjari, R.; Krishnamurthy, V.N. Rheology of HTPB Propellant: Effect of Mixing Speed and Mixing Time. Def. Sci. J. 1993, 43(2): 167-172.
- [10] Muthiah, R.M.; Krishnamurthy, V.N.; Gupta, B.R. Rheology of HTPB Propellant: Development of Generalized Correlation and Evaluation of Pot Life. Propellants Explos., Pyrotech. 1996, 21(4): 186-192; https://doi.org/10.1002/prep.19960210405.
- [11] Muthiah, R.M.; Krishnamurthy, V.N.; Gupta, B.R. Rheology of HTPB Propellant: Effect of Solid Loading, Oxidiser Particle Size, and Aluminum Content. J. Appl. Polymer Sci. 1992, 44(11): 2043-2052; https://doi.org/10.1002/app.1992.070441120.
- [12] Nair, C.P.R.; Prasad, C.H.D.V.; Ninan, K.N. Effect of Process Parameters on the Viscosity of AP/Al/HTPB Based Solid Propellant Slurry. J. Energy Chem. Eng. 2013, 1(1): 1-9.
- [13] Jawalkar, S.N.; Mehilal; Kurva, R.; Singh, P.P.; Bhattacharya, B. Influence of Bicurative on Processability of Composite Propellant. Def. Sci. J. 2007, 57(5): 669-675.
- [14] Bandgar, B.M.; Krishnamurthy, V.N.; Mukundan, T.; Sharma, K.C. Mathematical Modeling of Rheological Properties of Hydroxyl-terminated Polybutadiene Binder and Dioctyl Adipate Plasticizer. J. Appl. Polymer Sci. 2002, 85: 1002-1007.
- [15] Provatas, A. Energetic Polymers and Plastics for Explosive Formulations ‒ A Review of Recent Advances. Commonwealth of Australia, DSTO-TR-0966, Canberra, 2000.
- [16] Agrawal, J.P.; Hodgson, R. Organic Chemistry of Explosives. John Wiley & Sons Ltd, Chichester, 2007; ISBN-13: 978-0-470-02967-1.
- [17] Kubota, N. Propellants and Explosives, Thermochemical Aspects of Combustion. 2nd ed., Wiley-VCH Verlag GmbH & Co. KG, Weinheim, Germany, 2007; ISBN 978-3-527-31424-9.
- [18] Agrawal, J.P. High Energy Materials, Propellants Explosives and Pyrotechnics.Wiley-VCH Verlag GmbH & Co. KG, Weinheim, Germany, 2010; ISBN 978-3-527-32610-5.
- [19] Frankel, M.B.; Grant, L.R.; Flanagan, J.E. Historical Development of Glycidyl Azide Polymer. J. Propul. Power 1992, 8: 550-563; https://doi.org/10.2514/3.23514.
- [20] Nazare, A.N.; Asthana, S.N.; Singh, H. Glycidylazide Polymer (GAP) – An Energetic Component of Advanced Solid Rocket Propellants – a Review. J. Energ. Mater. 1992, 10: 043-063; https://doi.org/10.1080/07370659208018634.
- [21] Frankel, M.B.; Ranagan, J.E. Energetic Hydroxy Terminated Azide Polymer. Patent US 4268450, 1981.
- [22] Vandenburg, E.J. Polymers Containing Azidomethyl Side Chains. Patent US 3645917, 1972.
- [23] Ahad, E. Process for the Preparation of Alkyl Azide-substituted Hydroxy-terminated Polyethers. EU Patent 0274213, 1987.
- [24] Gettwert, V.; Bohn, M.A.; Fischer, S.; Weiser, V. Performance of ADN/GAP Propellants Compared to Al/AP/HTPB. Proc. Insensitive Munitions & Energetic Materials Technology Symp. (IMEMTS), Rome, Italy, 2015.
- [25] Hussein, A.K.; Elbeih, A.; Zeman, S. The Effect of Glycidylazide Polymer on the Stability and Explosive Properties of Different Interesting Nitramines. RSC Adv. 2018, 8: 17272-17278; https://doi.org/10.1039/C8RA02994F.
- [26] Nguyen, C.; Morin, F.; Hiernard, F.; Guengant, Y. High Performance Aluminized GAP-based Propellants – IM Results. Insensitive Munitions & Energetic Materials Technology Symp., Munich, Germany, 2010.
- [27] Da Silva, G.; Rufino, S.C.; Iha, K. Green Propellants: Oxidizer. J. Aerosp. Technol. Manage. 2013, 5(2): 139-144; https://doi.org/10.5028/jatm.v5i2.229.
- [28] Wingborg, N.; Andreasson, S.; de Flon, J.; Johnsson, M.; Liljedahl, M.; Oscarsson, C.; Petterssons, Å.; Wanhatalo, M. Development of ADN-based Minimum Smoke Propellants. AIAA Paper 2010-6586, IMEMTS, 2015, pp. 1-10; https://doi.org/10.2514/6.2010-6586.
- [29] Gettwert, V.; Franzin, A.; Bohn, M.A.; DeLuca, L.T.; Heintz, T.; Weiser, V. ADN/ GAP Composite Propellants with and without Metallic Fuels. Proc. 10th Int. Symp. on Special Topics in Chemical Propulsion & Energetic Materials (10-ISICP), Poitiers, France, 2014.
- [30] DeLuca, L.T.; Palmucci, I.; Franzin, A.; Weiser, V.; Gettwert, V.; Wingborg, N.; Sjöblomc, M. New Energetic Ingredients for Solid Rocket Propulsion. Proc. 9th Int. High Energy Materials Conf. and Exhibit (HEMCE), Thiruvananthapuram, Kerala, India, 2014.
- [31] Gettwert, V.; Fischer, S.; Menke, K. Aluminized ADN/GAP Propellants – Formulation and Properties. Proc. 44th Int. Annu. Conf. of Fraunhofer ICT, Karlsruhe, Germany, 2013, P57.
- [32] Menke, K.; Heintz, T.; Schweikert, W.; Keicher, T.; Krause, H. Formulation and Properties of ADN/GAP Propellants. Propellants Explos., Pyrotech. 2009, 34(3): 218-230; https://doi.org/10.1002/prep.200900013.
- [33] Klapötke, T.M.; Suceska, M. Theoretical Evaluation of TKX-50 as An Ingredient in Rocket Propellants. Z. Anorg. Allg. Chem. 2021, 647: 572-574; https://doi.org/10.1002/zaac.202100053.
- [34] Ampleman, G. Glycidyl Azide Polymer. Patent US 5359012, 1994.
- [35] Soman, R.R.; Athar, J.; Agawane, N.T.; Shee, S.; Gore, G.M.; Sikder, A.K. Synthesis, Characterization and Rheology of Tetrafunctional Glycidylazide Polymer vis-a`-vis Difunctional GAP. Polym. Bull. 2016, 73: 449-461; https://doi.org/10.1007/s00289-015-1500-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c81f426-9ebb-46a7-a152-40fa92f0e9f8