Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The use of terahertz-based techniques has grown very fast since they are capable of performing evaluations at molecular level, being very suitable for the analysis of biological samples and biomaterials such as those for contact lenses. These biomaterials are continuously evolving to enhance the lens wearer’s comfort by improving their hydration state and surface wettability. Therefore, this study examines a novel terahertz system for the assessment of the temporary in vitro dehydration of hydrogel contact lenses, which provides a new index to assess their state of hydration. Several conventional and silicone hydrogel contact lenses and lens care solutions were analysed. Traditional methods such as the gravimetric determination of water content and the measurement of the static contact angle were also carried out for the validation of the developed system. The dehydration rate measurements of contact lenses obtained with the proposed system correlated with the values provided by traditional methods. As a whole, conventional hydrogel contact lenses exhibited the lowest values for dehydration rate. The tests conducted on various solutions showed a correlation between the wetting action of the solution and the dehydration rate of the contact lens material.
Czasopismo
Rocznik
Tom
Strony
571--584
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
- Centre for Sensors, Instruments and Systems Development, Polytechnic University of Catalonia, Rambla Sant Nebridi 10, 08222, Terrassa, Spain
autor
- Department of Chemical Engineering, Polytechnic University of Catalonia, Colom 1, 08222, Terrassa, Spain
autor
- Centre for Sensors, Instruments and Systems Development, Polytechnic University of Catalonia, Rambla Sant Nebridi 10, 08222, Terrassa, Spain
autor
- Centre for Sensors, Instruments and Systems Development, Polytechnic University of Catalonia, Rambla Sant Nebridi 10, 08222, Terrassa, Spain
Bibliografia
- [1] XIANG YANG, XIANG ZHAO, KE YANG, YUEPING LIU, YU LIU, WEILING FU, YANG LUO, Biomedical applications of terahertz spectroscopy and imaging, Trends in Biotechnology 34(10), 2016, pp. 810–824,DOI:10.1016/j.tibtech.2016.04.008.
- [2] SHIRAGA K., SUZUKI T., KONDO N., TANAKA K., OGAWA Y., Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy, Applied Physics Letters 106(25), 2015, article ID 253701, DOI:10.1063/1.4922918.
- [3] GENTE R., KOCH M., Monitoring leaf water content with THz and sub-THz waves, Plant Methods 11,2015, article ID 15, DOI:10.1186/s13007-015-0057-7.
- [4] BREITENSTEIN B., SCHELLER M., SHAKFA M.K., KINDER T., MÜLLER-WIRTS T., KOCH M., SELMAR D.,Introducing terahertz technology into plant biology: a novel method to monitor changes in leaf water status, Journal of Applied Botany and Food Quality 84(2), 2011, pp. 158–161.
- [5] YAO-CHUN SHEN, Terahertz sensor for noncontact and non-destructive inspection of automotive paints, International Journal of Sensor Networks and Data Communications 4(1), 2014, article ID e103, DOI:10.4303/2090-4886.1000e103.
- [6] FUKUNAGA K., HOSAKO I., Innovative non-invasive analysis techniques for cultural heritage using terahertz technology, Comptes Rendus Physique 11(7–8), 2010, pp. 519–526, DOI:10.1016/j.crhy.2010.05.004.
- [7] YU C., FAN S., SUN Y., PICKWELL-MACPHERSON E., The potential of terahertz imaging for cancer diagnosis: A review of investigations to date, Quantitative Imaging in Medicine and Surgery 2(1),2012, pp. 33–45.
- [8] RAHMAN A., RAHMAN A.K., RAO B., Early detection of skin cancer via terahertz spectral profiling and 3D imaging, Biosensors and Bioelectronics 82, 2016, pp. 64–70, DOI:10.1016/j.bios.2016.03.051.
- [9] NICOLSON P.C., VOGT J., Soft contact lens polymers: an evolution, Biomaterials 22(24), 2001, pp. 3273–3283, DOI:10.1016/S0142-9612(01)00165-X.
- [10] JACOB J.T., Biocompatibility in the development of silicone-hydrogel lenses, Eye Contact Lens 39(1), 2013, pp. 13–19, DOI:10.1097/ICL.0b013e31827dbb00.
- [11] TIGHE B.T., A decade of silicone hydrogel development: surface properties, mechanical properties, and ocular compatibility, Eye and Contact Lens 39(1), 2013, pp. 4–12, DOI:10.1097/ICL.0b013e318275452b.
- [12] HUTTER J.C., GREEN J.A., EYDELMAN M.B., Proposed silicone hydrogel contact lens grouping system for lens care product compatibility testing, Eye and Contact Lens 38(6), 2012, pp. 358–362, DOI:10.1097/ICL.0b013e318260c959.
- [13] JONES L., MAY C., NAZAR L., SIMPSON T., In vitro evaluation of the dehydration characteristics of silicone hydrogel and conventional hydrogel contact lens materials, Contact Lens and Anterior Eye25(3), 2002, pp. 147–156, DOI:10.1016/S1367-0484(02)00033-4.
- [14] GONZÁLEZ-MÉIJOME J.M., LÓPEZ-ALEMANY A., ALMEDIA J.B., PARAFITA M.A., Dynamic in vitro dehydration patterns of unworn and worn silicone hydrogel contact lenses, Journal of Biomedical Materials Research Part B: Applied Biomaterials 90B(1), 2009, pp. 250–258, DOI:10.1002/jbm.b.31279.
- [15] KRYSZTOFIAK K., SZYCZEWSKI A., Study of dehydration and water states in new and worn soft contactlens materials, Optica Applicata 44(2), 2014, pp. 237–250, DOI:10.5277/oa140206.
- [16] RAJCHEL D., KRYSZTOFIAK K., SZYCZEWSKI A., Influence of sodium hyaluronate on dehydration and water distribution in soft contact lenses, Optica Applicata, 46(3), 2016, pp. 483–496, DOI:10.5277/oa160314.
- [17] MORGAN P.B., EFRON N., MORGAN S.L., LITTLE S.A., Hydrogel contact lens dehydration in controlled environmental conditions, Eye and Contact Lens 30(2), 2004, pp. 99–102, DOI:10.1097/01.ICL.00000118532.90284.09.
- [18] ALEMANY A.L., REFOJO M.F., Comparative study of the hydration of hydrophilic contact lenses by refractive index and gravimetry, CLAO J 26(4), 2000, pp. 200–203.
- [19] KETELSON H.A., MEADOWS D.L., STONE R.P., Dynamic wettability properties of a soft contact lens hydrogel, Colloids and Surfaces B: Biointerfaces 40(1), 2005, pp. 1–9, DOI:10.1016/j.colsurfb.2004.07.010.
- [20] MALDONADO-CODINA C., MORGAN P.B., In vitro water wettability of silicone hydrogel contact lenses determined using the sessile drop and captive bubble techniques, Journal of Biomedical Materials Research Part A 83A(2), 2007, pp. 496–502, DOI:10.1002/jbm.a.31260.
- [21]Supplement: Bringing new inspiration to contact lens care, Contact Lens Spectrum, September 2010.
- [22] LIU X.M., HARMON P.S., MAZIARZ E.P., RAH M.J., MERCHEA M.M., Comparative studies of hyaluronan in marketed ophthalmic products, Optometry and Vision Science 91(1), 2014, pp. 32–38, DOI:10.1097/OPX.0000000000000100.
- [23] EFRON N., YOUNG G., Dehydration of hydrogel contact lenses in vitro and in vivo, Ophthalmic and Physiological Optics 8(3), 1988, pp. 253–256, DOI:10.1111/j.1475-1313.1988.tb01055.x.
- [24] DALTON K., SUBBARAMAN L.N., ROGERS R., JONES L., Physical properties of soft contact lens solutions, Optometry and Vision Science 85(2), 2008, pp. 122–128, DOI:10.1097/OPX.0b013e318162261e.
- [25] BENELLI U., NARDI M., POSARELLI C., ALBERT T.G., Tear osmolarity measurement using the Tear-Lab™ Osmolarity System in the assessment of dry eye treatment effectiveness, Contact Lens and Anterior Eye 33(2), 2010, pp. 61–67, DOI:10.1016/j.clae.2010.01.003.
- [26] NAGYOVÁ B., TIFFANY J.M., Components responsible for the surface tension of human tears, Current Eye Research 19(1), 1999, pp. 4–11, DOI:10.1076/ceyr.19.1.4.5341.
- [27] GOUVEIA S.M., TIFFANY J.M., Human tear viscosity: an interactive role for proteins and lipids, Biochimica et Biophysica Acta 1753(2), 2005, pp. 155–163, DOI:10.1016/j.bbapap.2005.08.023.
- [28] MOGHIMI S.M., HUNTER A.C., Poloxamers and poloxamines in nanoparticle engineering and experimental medicine, Trends in Biotechnology 18(10), 2000, pp. 412–420, DOI:10.1016/S0167-7799(00)01485-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c81d4dc-e956-43b2-bebf-c8a4e835de8f