PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of chloride ion corrosion on the performance of reinforced concrete beam bridge in offshore environment

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chloride ion erosion in offshore environment may damage the mechanical properties of beam bridges. In this study, the reinforced concrete specimen was designed, accelerated erosion experiments were carried out to simulate the coastal corrosion environment, and the corrosion rate, nominal strength and equivalent strength of steel bars, concrete cracks and reliability of beam bridges were calculated to understand the time-varying mechanical properties of beam bridges. The results showed that the nominal and equivalent strength of reinforcing bars decreased with the increase of corrosion rate of reinforcing bars. The change of yield strength was greater than that of equivalent strength. The change of crack width of concrete showed a slow-fast-slow trend, and the reliability of beam bridges decreased significantly in about 50 years. The experimental results show that chloride ion corrosion can significantly damage the mechanical properties of the beam bridge and affect the time-varying reliability of the beam bridge. Therefore, it is necessary to carry out timely maintenance and inspection and take effective methods to control steel corrosion to ensure the safety of the use of the beam bridge.
Rocznik
Strony
253--265
Opis fizyczny
Bibliogr. 19 poz., il., tab.
Twórcy
autor
  • School of Architectural Engineering, Shangqiu Normal University, Shangqiu, Henan, China
Bibliografia
  • 1. L. Bertolini, M. Carsana, M. Gastaldi, F. Lollini, E. Redaelli, “Corrosion assessment and restoration strategies of reinforced concrete buildings of the cultural heritage”, Materials & Corrosion 62: 146-154, 2015.
  • 2. E. M. Güneyisi, K. Mermerdaş, E. Güneyisi, M. Gesoğlu, “Numerical modeling of time to corrosion induced cover cracking in reinforced concrete using soft-computing based methods”, Materials and Structures 48: 1739-1756, 2015.
  • 3. M. Ormellese, F. Bolzoni, L. Lazzari, P. Pedeferri, “Effect of corrosion inhibitors on the initiation of chloride-induced corrosion on reinforced concrete structures”, Materials & Corrosion 59: 98-106, 2015.
  • 4. O. Almubaied, H. K. Chai, M. R. Islam, K. S. Lim, C. G. Tan, “Monitoring Corrosion Process of Reinforced Concrete Structure Using FBG Strain Sensor”, IEEE Transactions on Instrumentation and Measurement 1-8, 2017.
  • 5. J. Mao, J. Chen, L. Cui, W. Jin, C. Xu, Y. He, “Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors”, Sensors 15: 8866-8883, 2015.
  • 6. A. Guo, H. Li, X. Ba, X. Guan, H. Li, “Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment”, Engineering Structures 105: 1-11, 2015.
  • 7. X. Xi, S. Yang, C. O. Li, “Accurate cover crack modelling of reinforced concrete structures subjected to non-uniform corrosion”, Structure & Infrastructure Engineering Maintenance Management Life-Cycle Design & Performance 1-13, 2018.
  • 8. J. Nepal, H. P. Chen, ”Assessment of concrete damage and strength degradation caused by reinforcement corrosion”, Journal of Physics: Conference Series 628: 012050, 2015.
  • 9. H. S. Lee, J. H. Park, J. K. Singh, M. A. Ismail, “Protection of reinforced concrete structures of waste water treatment reservoirs with stainless steel coating using arc thermal spraying technique in acidified water”, Materials 9: 753-, 2016.
  • 10. W.W. Li, W.Q. Liu, S.G. Wang, “The effect of crack width on chloride-induced corrosion of steel in concrete”, Advances in Materials Science & Engineering 2017: 1-11, 2017.
  • 11. D. Chen, S. Mahadevan, “Chloride-induced reinforcement corrosion and concrete cracking simulation”, Cement and Concrete Composites, 30(3): 227-238, 2008.
  • 12. S. Yang, C.Q. Li, “Numerical prediction for corrosion-induced concrete crack width”, Construction Materials 164(CM6): 293-303, 2011.
  • 13. T. Jaśniok, M. Jaśniok, “Influence of rapid changes of moisture content in concrete and temperature on corrosion rate of reinforcing steel”, Procedia Engineering 108: 316-323, 2015.
  • 14. I. Fernandez, M. F. Herrador, A. R. Mari, J. M. Bairán, “Structural effects of steel reinforcement corrosion on statically indeterminate reinforced concrete members”, Materials and Structures 49: 4959-4973, 2016.
  • 15. Z. M. Ma, T. J. Zhao, T. Guan, J. Z. Xiao, “Evaluation of rebar corrosion in reinforced concrete under freeze-thaw environment and protection measures”, Anti-Corrosion Methods and Materials 63: 128-136, 2016.
  • 16. B. Ellingwood, Y. Mori, “Probabilistic methods for life prediction of concrete structures in nuclear power plants”, Trans., 11th Ins. Conf. on Stuct. Mech. In Reactor Technol. D: 291-296, 1991.
  • 17. M. S. Asghshahr, A. Rahai, “Seismic assessment of reinforced concrete bridge under chloride-induced corrosion”, International Journal of Civil Engineering 1-13, 2018.
  • 18. W. Li, S. C. M. Ho, G. Song, “Corrosion detection of steel reinforced concrete using combined carbon fiber and fiber Bragg grating active thermal probe”, Smart Materials and Structures 25: 045017, 2016.
  • 19. Y. Hakan, S. Serhan, E. Ozgur, “Effect of corrosion damage on the performance level of a 25-year-old reinforced concrete building”, Shock and Vibration 19: 891-902, 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c7b2b1c-38e8-410e-a7fa-eb45a2ed35f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.