Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present research aimed to explore the influence of different felt-proofing methods on alpaca fibers’ scale structure. Dyed alpaca fibers were exposed to a particular wavelength of ultraviolet (UV) light for different periods and treated with protease to analyze the felt property and compare with untreated fibers. Experimental results have shown that alpaca fibers have better shrinkage resistance and dyeability after being exposed to UV light, whereas no recognizable change was obtained on the surface of alpaca fibers’ scale structure by scanning electron microscopy (SEM). In contrary, enzyme-treated alpaca fibers revealed improved dye rate and resistance to shrinkage. Especially, damaged scales on many areas of fiber surface were appeared by SEM, which indicates that UV may have a positive effect on enzyme treatment by damaging alpaca fibers’ surface structure and promoting the amount of protease going into the fibers’ inner layers. Therefore, eventually a better shrinkage resistance was obtained.
Czasopismo
Rocznik
Tom
Strony
476--483
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- College of Textiles, Donghua University, Shanghai 201620, China
autor
- College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
- Department of Textile Engineering, Ahsanullah University of Science and Technology, Dhaka 1208, Bangladesh
autor
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
- Donghua University Centre for Civil Aviation Composites, Donghua University, Shanghai 201620, China
Bibliografia
- [1] Memon, H., Wang, H., Langat, E. (2018). Determination and characterization of the wool fi ber yield of Kenyan sheep breeds: an economically sustainable practical approach for Kenya. Fibers, 6(3), 1-12.
- [2] Khoso, A., Memon, H., Hussain, M., Sanbhal, N., et. al. (2016). Production and Characterization of Wool and Hair Fibers in Highlands of Baluchistan, an Economic and Sustainable Approach for Pakistan. Key Engineering Materials. 671, 473-482.
- [3] Dooley, W. H. Textiles for commercial, industrial, and domestic arts schools: also adapted to those engaged in wholesale and retail dry goods, wool, cotton, and dressmaker’s trades: DC Heath, 1914.
- [4] Atav, R., Turkmen, F. (2015). Investigation of the dyeing characteristics of alpaca fi bers (Huacaya and Suri) in comparison with wool. Textile Research Journal, 85(13), 1331–1339
- [5] Czaplicki, Z. (2012). Properties and structure of Polish alpaca wool. Fibres and Textiles in Eastern Europe,20(1, 90), 8–12.
- [6] Dalton, J., Franck, R. R. (2001). Cashmere, camel hair and other hair fi bres. In: Franck, R.R. (Ed.). Silk, Mohair, Cashmere and Other Luxury Fibers. Woodhead Publishing Ltd. (England).
- [7] Wang, L., Lin, T., et. al. (2005). Frictional and tensile properties of conducting polymer coated wool and alpaca fi bers. Fibers and Polymers, 6, 259-262.
- [8] Liu, X., Wang, L., Wang, X. (2004). Resistance to compression behavior of alpaca and wool. Textile research journal, 74 (3), 265-270.
- [9] Liu, X., Wang, L., Wang, X. (2004). Evaluating the softness of animal fi bers. Textile Research Journal, 74(6), 535-538.
- [10] Czaplicki, Z., Ruszkowski, K. (2014). Optimization of scouring alpaca wool by ultrasonic technique. Journal of Natural Fibers, 11(2), 169-183.
- [11] Valbonesi, A., Cristofanelli, S., Pierdominici, F., Gonzales, M., Antonini, M. (2010). Comparison of fi ber and cuticular attributes of alpaca and llama fl eeces. Textile Research Journal, 80(4), 344-353.
- [12] Jacobsen, M., Dhingra, R., Postle, R. (1992). A psychophysical evaluation of the tactile qualities of hand knitting yarns. Textile Research Journal, 62(10), 557-566.
- [13] Czaplicki, Z., Mikołajczyk, Z., Prążyńska, A. (2018). Analysis of functional properties of knitted fabrics made of alpaca wool and other fi bres. Fibres & Textiles in Eastern Europe, 26(3), 52-59.
- [14] Galaska, M. L., Sqrow, L. D., Wolf, J. D., Morgan, A. B. (2019). Flammability Characteristics of Animal Fibers: Single Breed Wools, Alpaca/Wool, and Llama/Wool Blends. Fibers, 7(1),1-20.
- [15] Makinson, K. R. (1975). Surface Properties of Wool Fibers. In: Schick, M.(Ed.). Surface Characteristics of Fibers and Textiles, Part 1 (0th edition). Marcel Dekker Inc (New York and Basel).
- [16] Okada, M., Kimura, Y., Joko, K. (2010). Morphological analysis of shrinkproof wool fibers by SEM combined with alkaline and enzymatic etching techniques: microstructural differences of DCCA- and Kroy-processed fibers. Sent Gakkaishi, 66(5), 131-139.
- [17] Hassan, M. M., Carr, C. M. (2019). A review of the sustainable methods in imparting shrink resistance to wool fabrics. Journal of Advanced Research, 18, 39-60.
- [18] Baird, K., Foulds, R. A. (1968). Felting shrinkage of plain-knitted wool fabrics: Its dependence upon fabric structure and shrinkproofing level. Textile Research Journal, 38(7), 743-753.
- [19] Sabatini, F., Nacci, T., Degano, I., Colombini, M. P. (2018). Investigating the composition and degradation of wool through EGA/MS and Py-GC/MS. Journal of Analytical and Applied Pyrolysis, 135, 111-121.
- [20] Asquith, R. S., Rivett, D. E. (1959). The Photolysis of Tyrosine and its Possible Relationship to the Yellowing of Wool. Textile Research Journal, 39(7), 633-637.
- [21] Memon, H., Wang, H., Yasin S., Halepoto, A. (2018). Influence of Incorporating Silver Nanoparticles in Protease Treatment on Fiber Friction, Antistatic, and Antibacterial Properties of Wool Fibers. Journal of Chemistry, 2018, 4845687, 1-8. doi:10.1155/2018/4845687.
- [22] Wang, H., Memon, S., Memon, H. (2018). Kenyan Wool Fiber Properties Sampled from Different Sheep Body Parts. Journal of Donghua University (English Edition), 35(6), 503-508.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c73e013-fa48-479b-b310-1d06bc6c51b6