PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charakterystyka systemów wodnych stosowanych w wybranych misjach kosmicznych

Autorzy
Identyfikatory
Warianty tytułu
EN
Characteristics of water systems used in selected space missions
Języki publikacji
PL
Abstrakty
PL
Obieg wodny w obiektach kosmicznych jest kluczowy dla zapewnienia prawidłowego funkcjonowania załogi, co ma bezpośredni wpływ na powodzenie misji. Charakterystyka tego systemu zależy od rodzaju misji, czasu trwania i odległości od Ziemi. Dotychczasowe misje kosmiczne pozwoliły na wypracowanie różnych schematów rozwiązań przedstawionych w niniejszym opracowaniu. Metody udoskonalania tych rozwiązań są obecnie jednym z najważniejszych aspektów projektowania przyszłych wypraw.
EN
The water subsystem in space objects is crucial for proper functioning of the crew, which has a direct impact on the success of the mission. The characteristics of this system depend on the type of mission, duration and distance from the Earth. The previous space missions have allowed to develop various schemes of solutions, which are presented in this study. Methods of improving these solutions are currently one of the most important aspects of designing future missions.
Czasopismo
Rocznik
Tom
Strony
38--41
Opis fizyczny
Bibliogr. 22 poz., fot., rys. tab.
Twórcy
autor
  • Katedra Technologii Oczyszczania Wody i Ścieków, Wydział Inżynierii Środowiska, Politechnika Wrocławska
Bibliografia
  • 1. Anderson M.S., Ewert M.K., Keener J.F., Wagner S.A., Life Support Baseline Values and Assumptions Document, National Aeronautics and Space Administration, Washington, D.C., Report No. NASA/TP-2015-218570, 2018.
  • 2. Boynton J.H., Fields E.M., Results of the Second US Manned Orbital Space Flight, National Aeronautics and Space Administration, Houston, TX, Manned Spacecraft Center, Report No. NASA-SP-6,1962.
  • 3. Calvin M., Gazenko O.G., Foundations of Space Biology and Medicine. Volume 3, NASA N76-26831, 32, 34, 36 and 37, Washington DC, 1975.
  • 4. Carter L., Williamson J., Brown C.A., Bazley J., Gazda D., Schaezler R., Thomas F., Status of ISS Water Management and Recovery, Paper ICES088, 48th International Conference on Environmental Systems, Albuquerque, New Mexico, July 15-19, 2017.
  • 5. Cervantes J.L., Hong B.Y., Dysbiosis and immune dysregulation in outer space, „International Reviews of Immunology", 35(1), 2016, p. 67-82.
  • 6. Clément G., The musculoskeletal system in space, „Fundamentals of space medicine", Springer, New York 2011, p. 181-216.
  • 7. Crapanzano F., Crapanzano S., Graziano G., ludicello M., Mazzucco W., Analysis of the traditional approaches for astronauts' personal hygiene in outer space, „Italian Journal of Aerospace Medicine”, July 14, 2016, p. 40-53.
  • 8. Diamant B.L., Humphries W.R., Past and present environmental control and life support systems on manned spacecraft, ,,SAE Transactions", Vol. 99, 1990, p. 376-408.
  • 9. Grigoriev A.I., Morukov B.V., Vorobiev D.V., Water and electrolyte studies during long-term missions onboard the space stations SALYUT and MIR, „The Clinical Investigator", 72(3), 1994, p. 169-189.
  • 10. Hopson G.D., Littles J.W., Patterson W.C., Skylab Environmental Control and Life Support Systems, ASME Paper 71-AV-14, Life Support and Environmental Control Conference, San Francisco, CA, July 12-14, 1971.
  • 11. Jenkins D.R., Space Shuttle: The History of the National Space Transportation System: The First 100 Missions, Specialty Press, Midland 2001.
  • 12. Jones H.W., Kliss M.H., Exploration life support technology challenges for the Crew Exploration Vehicle and future human missions, „Advances in Space Research", 45, 2010, p. 917-928.
  • 13. Lutwak L., Whedon G.D., Lachance P.A., Reid J.A., Lipscomb H.S., Mineral, Electrolyte and Nitrogen Balance Studies of the Gemini-VII Fourteen-Day Orbital Space Flight, „Metabolic Studies in space flight", 29, 1969, p.1140-1156.
  • 14. McAllister F.A., Apollo Experience Report - Crew Provisions and Equipment Subsystem, Technical Note TN D-6737, 1972.
  • 15. McLean R.J., Cassanto J.M., Barnes M.B., Koo J.H., Bacterial biofllm formation under microgravity conditions, „FEMS Microbiology Letters", 195(2), 2001, p. 115-119.
  • 16. Nickerson C.A., Ott C.M., Wilson J.W., Ramamurthy R., Pierson D.L., Microbial responses to microgravity and other low-shear environments, „Microbiology and Molecular Biology Reviews", 68(2), 2004, p. 345-361.
  • 17. Smith S.M., McCoy T., Gazda D., Morgan J.L.L., Heer M., Zwart S.R., Space flight calcium: implications for astronaut health, spacecraft operations, and Earth, „Nutrients", 4, 2012, p. 2047-2068.
  • 18. Smith S.M., Zwart S.R., Magnesium and space flight, „Nutrients", 7, 2015, p. 10209-10222.
  • 19. Tixador R., Richoilley G., Gasset G., Templier J., Bes J.C., Moatti N., Lapchine L., Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment), „Aviation, Space, and Environmental Medicine", 56(8), 1985, p. 748-751.
  • 20. Wileland P.O., Designing for human presence in space: an introduction to environmental control and life support systems (ECLSS), NASA Marshall Space Flight Center; Huntsville, AL, United States, Report No. NASA/TM-2005-214007, M-1142, 2005.
  • 21. Willis C.E., Schultz J.R., Spacecraft Water Systems Disinfection Technology: Past, Present and Future Needs, ,,SAE Paper" No. 871487,17th Intersociety Conference on Environmental Systems, Seattle, WA, July 13-15, 1987.
  • 22. www.archive.org/details/sl3-108-1295.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c72d310-af2f-431f-8f2d-480031be30a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.