PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of macrophytes in structuring littoral habitats in the Vistula Lagoon (southern Baltic Sea)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the research conducted in the years 2011-2014 in the near-shore zone of the Vistula Lagoon was the verification of the hypothesis that in the coastal lagoon, similarly as in inland waters, habitat conditions can be substantially modified by macrophytic vegetation, depending on the represented life form and its abundance. The research was conducted in the zone of emergent plants (reed rush composed of Phragmites australis) and in the zone of submerged plants occurring as scattered patches of Potamogeton perfoliatus and Stuckenia pectinata. The hypothesis was supported only in the case of the reed rush chich substantially modified water insolation, temperature, and oxygenation, as well as the grain size composition of sediments, and concentration of organic matter contained in the sediments. Patches of submerged vegetation had insufficient surface area and were too scarcely overgrown by plants to considerably affect the habitat conditions and weaken the strong mechanical effect of waves and rate of water exchange between the littoral and open water zone.
Czasopismo
Rocznik
Strony
26--37
Opis fizyczny
Bibliogr. 57 poz., mapa, rys., tab., wykr.
Twórcy
  • Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
  • Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
Bibliografia
  • [1] Able, K. W., Hagan, S. M., 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans. Estuaries 23 (5), 633-646, http://dx.doi.org/10.2307/1352890.
  • [2] Barko, J. W., James, W. F., 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In: Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, K. (Eds.), The structuring role of submerged macrophytes in lakes. Ecol. Stu. An., Vol. 131. Springer, New York 197-214, https://doi.org/10.1007/978-1-4612-0695-8_10.
  • [3] Bekele, T., Lemma, B., Mengistou, S., 2016. Carbon sequestration potentials of selected wetlands at Lake Ziway, Ethiopia. J. Environ. Earth Sci. 6 (9), 1-9.
  • [4] Bernal, B., Mitsch, W. J., 2012. Comparing carbon sequestration in temperate freshwater wetland communities. Glob. Change Biol. 18 (5), 1636-1647, http://dx.doi.org/10.1111/j.1365-2486.2011.02619.x.
  • [5] Bernatowicz, S., 1960. Methods of examination of vascular vegetation in lakes. Roczniki Nauk Rolniczych 77 (B-l), 61-78, (in Polish).
  • [6] Berthold, M., Karstens, S., Buczko, U., Schumann, R., 2018. Potential export of soluble reactive phosphorus from a coastal wetland in a cold-temperate lagoon system: Buffer capacities of macrophytes and impact on phytoplankton. Sci. Total Environ. 616-617, 46-54, http://dx.doi.org/10.1016/j.scitotenv.2017.10.244.
  • [7] Blott, S. J., Pye, K., 2001. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Proc. Land. 26 (11), 1237-1248, http://dx.doi.org/10.1002/esp.261.
  • [8] Boszke, P., Bociag, K., Szmeja, J., 2005. Population structure and regeneration of Phragmites australis (Cav.) Trin. ex Steud in flood control ditches in the depression wetland (Żuławy Wiślane, Northern Poland). Pol. J. Ecol. 53 (1), 3-12.
  • [9] Carpenter, S. R., Lodge, D. M., 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26, 341-370, http://dx.doi.org/10.1016/0304-3770(86)90031-8.
  • [10] Chubarenko, B. V., 2008. The Vistula Lagoon. In: Chubarenko, B. V. (Ed.), Transboundary waters and basins in the south-east Baltic, Terra Baltica, Kaliningrad, 37-57, ISBN 978-5-98777-031-3.
  • [11] Chen, R. L., Barko, J. W., 2011. Effects of fresh-water macrophytes on sediment chemistry. J. Freshwater Ecol. 4 (3), 279-289, http://dx.doi.org/10.1080/02705060.1988.9665177.
  • [12] Ding, W., Cai, Z., Tsuruta, H., 2005. Plant species effects on CH4 emissions from freshwater marshes. Atmos. Environ. 39 (18), 3199-3207, http://dx.doi.org/10.1016/j.atmosenv.2005.02.022.
  • [13] Ecohydrodynamic Model, 2016. Ecohydrodynamic Model. The Gulf of Gdańsk including the Vistula Lagoon. Inst. Oceanograph. Univ. Gdańsk. http://model.ocean.univ.gda.pl/ (accessed 05.11.16.).
  • [14] Gajewski, L. (Ed.), 2010. Research of the Vistula Lagoon bottom (including the Elbląg Bay).Final Report. Rep. No. 334 by the Maritime Institute in Gdańsk for the Maritime Office in Gdynia, 1-96, (in Polish).
  • [15] Geoportal, 2014. Geoportal, http://geoportal.gov.pl/, (accessed 2014).
  • [16] Google Inc., 2014-2016. Google Earth computer software, (accessed 2014).
  • [17] Grant, L., 1987. Diffuse and specular characteristics of leaf reflectance. Remote Sensing of Environment 22 (2), 309-322, http://dx.doi.org/10.1016/0034-4257(87)90064-2.
  • [18] Haslam, S. M., 1973. Some aspects of the life history and autecology of Phragmites communis Trin. — A review. Pol. Arch. Hydrobiol. 20, 79-100.
  • [19] Horppila, J., Nurminen, L., 2005. Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake. Hydrobiologia 545 (1), 167-175, http://dx.doi.org/10.1007/s10750-005-2677-9.
  • [20] Huryna, H., Pokorny, J., 2016. The role of water and vegetation in the distribution of solar energy and local climate: A review. Folia Geobot. 51 (3), 191-208, http://dx.doi.org/10.1007/s12224-016-9261-0.
  • [21] Kim, J., Verma, S. B., Billesbach, D. P., Clement, R. J., 1998. Diel variation in methane emission from a midlatitude prairie wetland: Significance of convective through flow in Phragmites australis J. Geophys. Res. —Atmos. 103 (D21), 28029-28039, http://dx.doi.org/10.1029/98JD02441.
  • [22] Kornijów, R., 2018. Ecosystem of the Polish part of the Vistula Lagoon from the perspective of alternative stable states concept, with implications for management issues. Oceanologia 60 (3), 1-15, http://dx.doi.org/10.1016/j.oceano.2018.02.004.
  • [23] Kruk, M., Rychter, A., Mróz, M. (Eds.), 2012. The Vistula Lagoon. Environment and its research in the VISLA project. PWSZ, Elbląg, 1-178.
  • [24] Kuehn, K. A., Suberkropp, K., 1998. Diel fluctuations in rates of CO2 evolution from standing dead leaf litter of the emergent macrophyte Juncus effusus. Aquat. Microbial Ecol. 14 (2), 171-182, http://dx.doi.org/10.3354/ame014171.
  • [25] Kuehn, K. A., Lemke, M. J., Suberkropp, K., Wetzel, R. G., 2000. Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnol. Oceanogr. 45 (4), 862-870, http://dx.doi.org/10.4319/lo.2000.45.4.0862.
  • [26] Latała, A., 1978. Chlorophyll concentration in the waters of the Vistula Lagoon. Stud. Mater. Oceanol. 4 (21), 81-94, (in Polish).
  • [27] Lelong, B., Lavoie, C., Jodoin, Y., Belzile, F., 2007. Expansion pathways of the exotic common reed (Phragmites australis): A historical and genetic analysis. Divers. Distrib. 13 (4), 430-437, http://dx.doi.org/10.1111/j.1472-4642.2007.00351.x.
  • [28] McCree, K. J., 1981. Photosynthetically active radiation. In: Lange, O. L., Nobel, P. S., Osmond, C. B., Ziegler, H. (Eds.), Physiological plant ecology I. Encyclopedia of plant physiology (New Series) 12/A. Springer, Berlin, Heidelberg, 41-55, http://dx.doi.org/10.1007/978-3-642-68090-8_3.
  • [29] McGlathery, K. J., Sundback, K., Anderson, I. C., 2007. Eutrophication in shallow coastal bays and lagoons: The role of plants in the coastal filter. Mari. Ecol. Progr. Ser. 348, 1-18, http://dx.doi.org/10.3354/meps07132.
  • [30] Meyerson, L. A., Saltonstall, K., Windham, L., Kiviat, E., Findlay, S. A., 2000. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetl. Ecol. Manag. 8 (2-3), 89-103, http://dx.doi.org/10.1023/A:1008432200133.
  • [31] Miranda, L. E., Driscoll, M. P., Allen, M. S., 2000. Transient physicochemical microhabitats facilitate fish survival in inhospitable aquatic plant stands. Freshwater Biol. 44 (4), 617-628, http://dx.doi.org/10.1046/j.1365-2427.2000.00606.x.
  • [32] Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, L., Jørgensen, S. E., Brix, H., 2013. Wetlands, carbon, and climate change. Landscape Ecol. 28 (4), 583-597, http://dx.doi.org/10.1007/s10980-012-9758-8.
  • [33] Moller, I., Mantilla-Contreras, J., Spencer, T., Hayes, A., 2011. Microtidal coastal reed beds: Hydro-morphological insights and observations on wave transformation from the southern Baltic Sea. Estuar. Coastal Shelf Sci. 92 (3), 424-436, http://dx.doi.org/10.1016/j.ecss.2011.01.016.
  • [34] Moller, C. L., Sand-Jensen, K., 2012. Rapid oxygen exchange across the leaves of Littorella uniflora provides tolerance to sediment anoxia. Freshwater Biol. 57 (9), 1875-1883, http://dx.doi.org/10.1111/j.1365-2427.2012.02849.x.
  • [35] Nawrocka, L., Kobos, J., 2011. The trophic state of the Vistula Lagoon: An assessment based on selected biotic and abiotic parameters according to the Water Framework Directive. Oceanologia 53 (3), 881-894, http://dx.doi.org/10.5697/oc.53-3.881.
  • [36] Odum, E. P., 1971. Fundamentals of ecology. W. B. Saunders Co., Philadelphia, London, Toronto, 1-574.
  • [37] Olsson, L., Ye, S., Yu, X., Wei, M., Krauss, K. W., Brix, H., 2015. Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China. Biogeosciences 12 (16), 4965-4977, http://dx.doi.org/10.5194/bg-12-4965-2015.
  • [38] Ondok, J. P., 1973. Some basic concepts of modeling freshwater littoral ecosystems with respect to radiation regime of a pure Phragmites stand. Pol. Arch. Hydrobiol. 20 (1), 101-109.
  • [39] Perez-Ruzafa, A., Marcos, C., Perez-Ruzafa, I. M., Perez-Marcos, M., 2011. Coastal lagoons: “Transitional ecosystems” between transitional and coastal waters. J. Coast. Conserv. 15 (3), 369-392, http://dx.doi.org/10.1007/s11852-010-0095-2.
  • [40] Pliński, M., Simm, A., 1978. Seasonal fluctuations in the composition, distribution and quantity of phytoplankton in the Vistula Lagoon in 1974 and 1975. Stud. Mater. Oceanol. 4 (21), 53-80.
  • [41] Próchnicki, P., 2005. The expansion of common reed (Phragmites australis (Cav.) Trin. ex Steud.) in the anastomosing river valley after cessation of agriculture use (Narew River Valley, NE Poland). Pol. J. Ecol. 53 (3), 353-364.
  • [42] Renk, H., Ochocki, S., Zalewski, M., Chmielowski, H., 2001. Environmental factors controlling primary production in the Polish part of the Vistula Lagoon. Bull. Sea Fish. Inst. 1 (152), 77-95.
  • [43] Ringer, Z., 1959. An attempt to estimate the biomass of the litoral flora of the Vistula Lagoon based on the studies carried out in 1955. Prace Morskiego Instytutu Rybackiego w Gdyni 10 (A), 193-214.
  • [44] Różańska, Z., Więcławski, F., 1978. Study of environmental factors of the Vistula Lagoon under human pressure. Studia Mat. Oceanol., Biologia Morza 4 (21), 9-36, (in Polish).
  • [45] Rupprecht, F., Moller, I., Paul, M., Kudella, M., Spencer, T., Van Wesenbeeck, B. K., Wolters, G., Jensen, K., Bouma, T. J., Miranda-Lange, M., Schimmels, S., 2017. Vegetation-wave interactions in salt marshes under storm surge conditions. Ecol. Eng. 100, 301-315, http://dx.doi.org/10.1016/j.ecoleng.2016.12.030.
  • [46] Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., Jeppesen, E., 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8 (8), 275-279, http://dx.doi.org/10.1016/0169-5347(93)90254-M.
  • [47] Sokal, R. I., Rohlf, J., 1995. Biometry: The principle and practice of statistics in biological research. Freeman & Co, New York, 1-887.
  • [48] StatSoft Inc., 2011. STATISTICA (data analysis software system), version 10. Available from www.statsoft.com.
  • [49] Szarejko-Łukaszewicz, D., 1959. Hydrographic research on the Vistula Lagoon in 1953-1954. Prace Morskiego Instytutu Rybackiego w Gdyni 10 (A), 215-228, (in Polish).
  • [50] Viaroli, P., Bartoli, M., Bondavalli, C., Christian, R. R., Giordani, G., Naldi, M., 1996. Macrophyte communities and their impact on benthic fluxes of oxygen, sulphide and nutrients in shallow eutrophic environments. Hydrobiologia 329 (1-3), 105-119, http://dx.doi.org/10.1007/BF00034551.
  • [51] Viaroli, P., Bartoli, M., Giordani, G., Naldi, M., Orfanidis, S., Zaldivar, J. M., 2008. Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: A brief overview. Aquat. Conserv. 18 (S1), 105-117, http://dx.doi.org/10.1002/aqc.956.
  • [52] Warren, R. S., Fell, P. E., Grimsby, J. L., Buck, E. L., Rilling, G. C., Fertik, R. A., 2001. Rates, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River. Estuaries 24 (1), 90-107, http://dx.doi.org/10.2307/1352816.
  • [53] Weisner, S. E. B., 1991. Within-lake patterns in depth penetration of emergent vegetation. Freshwater Biol. 26 (1), 133-142, http://dx.doi.org/10.1111/j.1365-2427.1991.tb00515.x.
  • [54] Wetzel, R. G., Hough, R. A., 1973. Productivity and role of aquatic macrophytes in lakes: An assessment. Polish Archive of Hydrobiology 20, 9-19.
  • [55] Yandex, 2014. Yandex — Maps, https://www.yandex.ru/maps/, (accessed 2014).
  • [56] Zachowicz, J., Uścinowicz, Sz., Anolik, P., Zaleszkiewicz, L., Krzymińska, J., Jegliński, W., 1995. Geological survey of the Vistula Lagoon area. Archiwum OGM, PIG, Gdańsk, (in Polish).
  • [57] Żmudziński, L., Szarejko, D., 1955. Hydrographic and biological studies of the Vistula Lagoon. Prace Morskiego Instytutu Rybackiego w Gdyni 8, 284-312, (in Polish).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c6fb43a-15e3-4e04-a9c9-1e0c60ffe3c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.