PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Free vibration of composite cylindrical shells with orthogonal stiffeners

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes theoretical and numerical approaches to scrutinize the free vibration of orthogonal stiffened cylindrical shells. According to K´arman-Donnell shell theory, the total energy of the stiffened cylindrical shells is derived. Based on the principle of minimum potential energy, the eigenfunction related to the frequency is established and solved by developing a Matlab program. Analytical solutions of the natural frequency for free vibraion of the stiffened cylindrical shells are calculated and are verified against the finite element results from ABAQUS software. On account of the observations from the parametric study, an optimization scheme of the stiffeners is proposed.
Rocznik
Strony
239--252
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Key Lab of Disaster Forecast and Control in Engineering, Ministry of Education, School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
autor
  • Key Lab of Disaster Forecast and Control in Engineering, Ministry of Education, School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
  • Key Lab of Disaster Forecast and Control in Engineering, Ministry of Education, School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
autor
  • Key Lab of Disaster Forecast and Control in Engineering, Ministry of Education, School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
  • Key Lab of Disaster Forecast and Control in Engineering, Ministry of Education, School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
autor
  • Key Lab of Disaster Forecast and Control in Engineering, Ministry of Education, School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
Bibliografia
  • 1. Ahmadi H., Foroutan K., 2019, Nonlinear vibration of stiffened multilayer FG cylindrical shells with spiral stiffeners rested on damping and elastic foundation in thermal environment, Thin-Walled Structures, 145, 106388.
  • 2. Bisagni C., Cordisco P., 2006, Post-buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque, Composite Structures, 73, 138-149.
  • 3. Breslavskii I.D., Strel’nikova E.A., Avramov K.V., 2011, Free vibrations of a shallow shell in fluid under geometrically nonlinear deformation, Strength of Materials, 43, 1, 25-32.
  • 4. Gan L., Li X.B., Zhang Z., 2009, Free vibration analysis of ring-stiffened cylindrical shells using wave propagation approach, Journal of Sound and Vibration, 326, 633-646.
  • 5. Hemmatnezhad M., Rahimi G.H., Tajik M., Pellicano F., 2015, Experimental, numerical and analytical investigation of free vibrational behavior of GFRP-stiffened composite cylindrical shells, Composite Structures, 120, 509-518.
  • 6. Jafari A. A., Bagheri M., 2006, Free vibration of non-uniformly ring stiffened cylindrical shells using analytical, experimental and numerical methods, Thin-Walled Structures, 44, 82-90.
  • 7. Lee H.W., Kwak M.K., 2015, Free vibration analysis of a circular cylindrical shell using the Rayleigh-Ritz method and comparison of different shell theories, Journal of Sound and Vibration, 353, 344-377.
  • 8. Li Y.K., Sun W.H., Duan G., Liang J.H., 2013, Stress calculation for large storage oil tanks’ shells based on the theory of short cylindrical shell, Advanced Material Research, 602-604, 2163-2169.
  • 9. Li Z.L., Hu H., Yu W., 2015, Free vibration of joined and orthogonally stiffened cylindricalspherical shells, Journal of Vibration and Shock, 34, 22, 129-137.
  • 10. Mohamad S.Q., 2002, Recent research advances in the dynamic behavior of shells: 1989-2000, Part 1: Laminated composite shells, Applied Mechanics Reviews, 55, 4, 325-350.
  • 11. Mohamad S.Q., Sullivan R. W., Wang W., 2010, Recent research advances on the dynamic analysis of composite shells: 2000-2009, Composite Structures, 93, 14-31.
  • 12. Qin Z.Y., Pang X.J., Safaei B., Chu F.L., 2019, Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions, Composite Structures, 220, 847-860.
  • 13. Rout M., Bandyopadhyay T., Karmakar A., 2017, Free vibration analysis of pretwisted delaminated composite stiffened shallow shells: A finite element approach, Journal of Reinforced Plastics and Composites, 36, 8, 619-636.
  • 14. Sadeghifar M., Bagheri M., Jafari A.A., 2010, Multiobjective optimization of orthogonally stiffened cylindrical shells for minimum weight and maximum axial buckling load, Thin-Walled Structures, 48, 12, 979-988.
  • 15. Sadovský, Z., Ďuricová, A., Ivančo, V., Kriváček, J., 2009, Imperfection measures of eigen- and periodic modes of axially loaded stringer-stiffened cylindrical shell, Proceedings of the Institution of Mechanical Engineers, Part G – Journal of Aerospace Engineering, 224, 601-612.
  • 16. Sheng G.G., Wang, X., 2018, The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells, Applied Mathematical Modelling, 56, 389-403.
  • 17. Swamy Naidu N.V., Sinha P.K., 2007, Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments, Composite Structures, 77, 475-483.
  • 18. Wang X.T., Yao W., Liang C., Ji N., 2007, Stability characteristics of ring-stiffened cylindrical shells under different longitudinal and transverse external pressures, Journal of Marine Science and Application, 6, 3, 33-38.
  • 19. Xue J.H., 2012, Local buckling in infinitely, long cylindrical shells subjected uniform external pressure, Thin-Walled Structures, 53, 211-216.
  • 20. Xue J.H., 2013, Post-buckling analysis of the length of transition zone in a buckle propagating pipeline, Journal of Applied Mechanics, 80, 5, 051002.
  • 21. Xue J.H., Wang Y., Yuan D., 2015, A shear deformation theory for bending and buckling of undersea sandwich pipes, Composite Structures, 132, 633-643.
  • 22. Xue J.H., Yuan D., Han F., Liu R., 2013, An extension of Kárman-Donnell’s theory for non-shallow, long cylindrical shells undergoing large deflection, European Journal of Mechanics A/Solids, 37, 329-35.
  • 23. Zhou X.P., 2012, Vibration and stability of ring-stiffened thin-walled cylindrical shells conveying fluid, Acta Mechanica Solida Sinica, 25, 2, 168-176.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c6ede72-89dd-4455-ab89-df8dff0b0aee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.