PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametric Prediction of FDM Process to Improve Tensile Properties Using Taguchi Method and Artificial Neural Network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fused deposition modeling (FDM) is a popular 3D printing technique that creates parts by heating, extruding, and depositing filaments made of thermoplastic polymers. The processing parameters have a considerable impact on the characteristics of FDM-produced parts. This paper focuses on the parametric prediction of the FDM process to predict ultimate tensile strength and determine a mathematical model using the Taguchi method and Artificial Neural Network. Five manufacturing variables, such as layer thickness, print speed, orientation angle, number of parameters, and nozzle temperature at five levels, are used to study the mechanical properties of PLA material to manufacture specimens using FDM 3D printer. The specimens are produced for tensile tests in accordance with ASTM-D638 standards, and the process parameters are established using the Taguchi orthogonal array experimental design technique. The results proved that the printing process parameters significantly impacted the tensile strength by changing the tensile test values between 37 MPa and 53MPa. Also, the neural network predicted the tensile strength values, and the maximum error was equal to 8.91%, while the mathematical model had a maximum error equal to 19.96%.
Twórcy
autor
  • Department of Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq
  • Department of Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq
autor
  • Department of Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq
Bibliografia
  • 1. Chen K., Yu L., Cui Y., Jia M., Pan K. Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites. Thin-Walled Structures. 2021; 1(164): 107717.
  • 2. Hikmat M., Rostam S., Ahmed Y.M. Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results in Engineering. 2021; 1(11): 100264.
  • 3. Morampudi P., Ramana V.V., Prabha K.A., Swetha S., Rao A.B. 3D-printing analysis of surface finish. Materials Today: Proceedings. 2021; 1(43): 587–592.
  • 4. Srinivasan R., Kumar K.N., Ibrahim A.J., Anandu K.V., Gurudhevan R. Impact of fused deposition process parameter (infill pattern) on the strength of PETG part. Materials Today: Proceedings. 2020; 1(27): 1801–1805.
  • 5. Sukindar N.A., Azhar M.A., Shaharuddin S.I., Kamruddin S., Azhar A.Z., Yang C.C., Adesta E.Y. A review study on the effect of printing parameters of fused deposition modeling (FDM) metal-polymer composite parts on mechanical properties and surface roughness. Malaysian Journal of Microscopy. 2022; 19: 18(1).
  • 6. Yao T., Deng Z., Zhang K., Li S. A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Composites Part B: Engineering. 2019; 163: 393–402.
  • 7. Enzi A., Mynderse J.A. Optimization of process parameters applied to a prototype selective laser sintering system. InASME International Mechanical Engineering Congress and Exposition 2017 Nov 3 (Vol. 58356, p. V002T02A022). American Society of Mechanical Engineers.
  • 8. Lalegani Dezaki M., Ariffin M.K., Serjouei A., Zolfagharian A., Hatami S., Bodaghi M. Influence of infill patterns generated by CAD and FDM 3D printer on surface roughness and tensile strength properties. Applied Sciences. 2021; 11(16): 7272.
  • 9. D’Addona D.M., Raykar S.J., Singh D., Kramar D. Multi Objective Optimization of Fused Deposition Modeling Process Parameters with Desirability Function. Procedia CIRP. 2021; 99: 707–710.
  • 10. Pang R., Lai M.K., Ismail K.I., Yap T.C. The Effect of Printing Temperature on Bonding Quality and Tensile Properties of Fused Deposition Modelling 3D-Printed Parts. InIOP Conference Series: Materials Science and Engineering. IOP Publishing. 2022; 1257(1): 012031.
  • 11. Ma X. Classification of additive manufacturing materials for radiologic phantoms (Doctoral dissertation, Wien).
  • 12. Wang S., Ma Y., Deng Z., Zhang S., Cai J. Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polymer testing. 2020; 86: 106483.
  • 13. Ahmad N.N., Wong Y.H., Ghazali N.N. A systematic review of fused deposition modeling proces parameters. Soft Science. 2022; 2(3): 11.
  • 14. Mallesham P. Overview of fused deposition modeling process parameters. In2nd National Conference on Developments, Advances & Trends in Engineering Science 2016: 92–99
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c6e115f-d967-4689-b6c8-44b456ff68af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.