PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multivariable predictive control considering time delay for load-frequency control in multi-area power systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a multivariable model based predictive control (MPC) is proposed for the solution of load frequency control (LFC) in a multi-area interconnected power system. The proposed controller is designed to consider time delay, generation rate constraint and multivariable nature of the LFC system, simultaneously. A new formulation of the MPC is presented to compensate time delay. The generation rate constraint is considered by employing a constrained MPC and economic allocation of the generation is further guaranteed by an innovative modification in the predictive control objective function. The effectiveness of proposed scheme is verified through time-based simulations on the standard 39-bus test system and the responses are then compared with the proportional-integral controller. The evaluation of the results reveals that the proposed control scheme offers satisfactory performance with fast responses.
Rocznik
Strony
527--549
Opis fizyczny
Bibliogr. 21 poz., rys., schem., tab., wykr., wzory
Twórcy
autor
  • Electrical Engineering Department, Faculty of Engineering, Ilam University, 69315-516 Ilam, Islamic Republic of Iran
autor
  • Islamic Azad University, Bandar Abbas Branch, 79158-93144 Bandar Abbas, Islamic Republic of Iran
autor
  • Electrical Engineering Department, Faculty of Engineering, Ilam University, 69315-516 Ilam, Islamic Republic of Iran
Bibliografia
  • [1] H. Bevrani: Robust Power System Frequency Control. New York, Springer, 2009, 1-48.
  • [2] H. Bevrani and T. Hiyama: On load frequency regulation with time delays: Design and real-time implementation. IEEE Trans. on Energy Convers, 24 (2009), 292-300.
  • [3] I. Ibraheem, P. Kumar and D. Kothari: Recent philosophies of automatic generation control strategies in power systems. IEEE Trans. on Power Systems, 20 (2005), 346-357.
  • [4] W. Tan, H. Zhang and M. Yu: Decentralized load frequency control in deregulated environments. Int. J. Electrical Power & Energy Systems, 41 (2012), 16-26.
  • [5] E. Ali and S. Abd-Elazim: Bacteria foraging optimization algorithm based load frequency controller for interconnected power system. Int. J. Electrical Power & Energy Systems, 33 (2011), 633-638.
  • [6] H. Gozde and M. Taplamacioglu: Automatic generation control application with craziness based particle swarm optimization in a thermal power system. Int. J. Electrical Power & Energy Systems, 33 (2011), 8-16.
  • [7] X. Yu and K. Tomsovic: Application of linear matrix inequalities for load frequency control with communication delays. IEEE Trans. on Power Systems, 19 (2004), 1508-1515.
  • [8] H. Golpira, H. Bevrani and H. Golpira: Application of GA optimization for automatic generation control design in an interconnected power system. Energy Convers Manage, 52 (2011), 2247-2255.
  • [9] J. Maciejowski: Predictive Control with Constraints. London, Prentice Hall, 2003, 1-104.
  • [10] T. H. Mohamed, H. Bevrani, A. A. Hassan and T. Hiyma: Decentralized model predictive based load frequency control in an interconnected power system. Energy Convers Manage, 52 (2011), 1208-1214.
  • [11] A. N. Venkat, I. A. Hiskens, J. B. Rawlings and J. S. Wright: Distributed MPC strategies with application to power system automatic generation control. IEEE Trans. on Control Systems Technology, 16 (2013), 1192-1206.
  • [12] M. Shiroei, A. M. Ranjbar and T. Amraee: A functional model predictive control approach for power system load frequency control considering generation rate constraint. Int. Trans. on Electrical Energy Systems, 23 (2013), 214-229.
  • [13] M. Shiroei, M. R. Toulabi and A. M. Ranjbar: Robust multivariable predictive based load frequency control considering generation rate constraint. Int. J. Electrical Power & Energy Systems, 46 (2013), 405-413.
  • [14] X. Liu, X. Zhan and D. Qian: Load frequency control considering generation rate constraints. Proc. IEEE Intelligent Control and Automation World Congress, (2010), 1398-1401.
  • [15] K. E. Martin: Phasormeasurement systems in the WECC. Proc. IEEE Power Engineering Society General Meeting, (2006), 132-138.
  • [16] H. Wu, K. S. Tsaklis and G. T. Hedydt: Evaluation of time delay effects to wide-area power system stabilizer design. IEEE Trans. on Power Systems, 19 (2004), 1935-1941.
  • [17] L. Wang: Model Predictive Control System Design and Implementation Using MATLB. London, Springer, 2009.
  • [18] J. Nocedal and S. J. Wright: Numerical Optimization. New York, Springer, 2006.
  • [19] J. Chow and G. Rogers: Power System Toolbox for MATLAB. Cherry Tree Scientific Software, available online at: http://www.eagle.ca/cherry,2007.
  • [20] L. Wang, C. Singh and A. Kusiak: Wind Power Systems: Applications of Computational Intelligence. Berlin, Springer, 2010, 407-738.
  • [21] G. F. Franklin, M. L. Workman and D. Powell: Digital control of Dynamic Systems. Addison-Wesley Longman Publishing Co, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c6bee1d-5be8-487a-80ca-4a06dd269384
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.