PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Analysis of Single Pile with Embedded Beam Row and Volume Pile Modeling under Seismic Load

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Indonesia is located between the Eurasian, Pacific, Philippines, and Indo-Australian plates. Various tectonic processes in the world and collisions between large plates and several small plates trigger many earthquakes in Indonesia. This study aimed to evaluate the response of bored piles in the Auditorium Building of Brawijaya University toward seismic loads through analytical and numerical approaches based on finite elements with 2D (embedded beam row) and 3D (volume pile) modeling, where the analysis approach of pile deformation and lateral resistance with numerical methods will depend on idealization of the model used. In addition, the lateral resistance was compared based on combination lateral loads, pile stiffness, and soil stiffness when the values were different. The 2D finite element analysis reduces lateral resistance but overestimated the deflection on the pile surface. This is because in the 2D finite element modeling with an embedded beam row that the friction factor represented by the spring can reduces the stiffness and the pile–soil is tangent, so that there is no slipping against each other. In addition, the 3D finite element analysis with volume pile modeling increases soil stiffness at greater depths and the friction factor (interface) can improve the interaction between the soil and pile.
Wydawca
Rocznik
Strony
28--40
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Civil Engineering Department, Brawijaya University, Indonesia
  • Civil Engineering Department, Brawijaya University, Indonesia
autor
  • Civil Engineering Department, Brawijaya University, Indonesia
Bibliografia
  • [1] Sluis, J.; Besseling F.; Stuurwold P.H.H.; Modelling of a pile row in a 2D plane strain FE-analysis. Num. Method. Geotech. Eng. 2014, 978-1-138-00146-6.
  • [2] Brown, D.A.; Morrison, C.; Reese, L.C. Lateral Load Behavior of Pile Group in Sand. J. Geotech. Eng. Am. Soc. Civil Eng. 1988, Volume 114, pp. 1261–1276.
  • [3] Hemel M.J.; Korff Mandy.; Peters D.J.; Analytical model for laterally loaded pile groups in layered sloping soil. Marine. Struc. 2022, 84, 103229.
  • [4] Cao, G.; Ding, X.; Yin, Z.; Zhou, H.; Zhou, P. A New Soil Reaction Model for Large-Diameter Monopiles in Clay. Comput. Geotech. 2021, 137, 104311. https://doi.org/10.1016/j.compgeo.2021.104311.
  • [5] API. Petroleum and Natural Gas. Industries-Specific Requirements for Offshore Structures: Part 4-Geotechnical and Foundation Design Considerations ISO 19901–4:2003; American Petroleum Institute: Washington, DC., USA, 2014.
  • [6] Wang, H.; Wang, L. Z.; Hong, Y.; He, B.; Zhu, R. H. Quantifying the influence of pile diameter on the load transfer curves of laterally loaded monopile in sand. App. Ocean. Res. 2020, 101, 102196.
  • [7] Isenhower, W. M.; Shin-Tower, W.; Gonzalo, V. L. (2016). Technical Manual for LPile 2016 (Using Data Format Version 9). Ensoft, Inc.
  • [8] Reese, L. C. Behavior of Piles and Pile Groups Under Lateral Load. Federal Highway Administration Office of Engineering & Highway Operations Research and Development: Washington D.C, US, 1986.
  • [9] API. Petroleum and Natural Gas. Industries-Specific Requirements for Offshore Structures: Part 4-Geotechnical and Foundation Design Considerations ISO 19901–4:2003; American Petroleum Institute: Washington, DC., USA, 2011.
  • [10] Liang, F.; Chen, H.; Jia, Y. Quasi-static p-y hysteresis loop for cyclic lateral response of pile foundations in offshore platforms. Ocean. Eng., 2018, 148, 62–74.
  • [11] Hyunsung L.; Sangseom J. Simplified p-y curves under dynamic loading in dry sand. Soil. Dyn. Earth. Eng. 2018, 113, 101–111.
  • [12] Hammam, A.H.; Eliwa, M. Comparison Between Results of Dynamic & Static Moduli of Soil Determined by Different Methods. HBRC J. 2013, 9, 144–149.
  • [13] Maheswari, R.U.; Boominathan, A.; Dodagoudar, G.R. Use of Surface Waves in Statistical Correlations of Shear Wave Velocity and Penetration Resistance of Chennai Soils. Geotech. Geo. Eng. 2010, 28, 119–137.
  • [14] Tsiambaos, G.; Sabatakakis, N. Empirical Estimation of Shear Wave Velocity from in Situ Tests on Soil Formations in Greece. Bull. Eng. Geo. Env. 2011, 70, 291–297.
  • [15] Badan Standardisasi Nasional. Perencanaan Ketahanan Gempa Untuk Gedung dan Non Gedung [SNI 1726:2019] [Earthquake Resistance Planning for Buildings and Non-Buildings [SNI 1726:2019]]. Badan Standardisasi Nasional: Jakarta, Indonesia, 2019.
  • [16] Das, B.M. Principles of Foundation Engineering, 7th ed. Thomson: Toronto, 2011.
  • [17] Poulos, H.G.; Davis, E.H. Pile Foundation Analysis and Design; Wiley: New York, USA, 1980. Available online: https://trid.trb.org/view/164430 (accessed on 24 May 2022).
  • [18] Li, Z.; Kotronis, P.; Escoffier, S. Numerical Study of the 3D Failure Envelope of a Single Pile in Sand. Com. Geotech. 2014, 62, 11–26.
  • [19] Sluis, J. Validation and Application of the Embedded Pile Row Feature in PLAXIS 2D. Plaxis Bulletin: Autumn issue. 2013.
  • [20] FHWA-HIF-18-031. (2018). Geoetchnical Engineering Circular: Design, Analysis, and Testing of Laterally Loaded Deep Foundations that Support Trannsportation Facilities. U.S. Department of Transportation; Federal Highway Administration.
  • [21] Yu, X.; Abu-Farsakh, M. Y.; Yoon, S.; Tsai, C.; Zhang, Z. Implementation of LRFD of drilled shafts in Louisiana. J. Infra. System. 2012, 18(2), 103–112.
  • [22] Tjie-Liong, G. Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. Int. J. App. Eng. Res. 2014, 9, 8291–8311.
  • [23] Zhang, Y.; Andersen, K. H.; & Tedesco, G. Ultimate bearing capacity of laterally loaded piles in clay–Some practical considerations. Marine. Struc. 2016, 50, 260–275.
  • [24] Zhou, P.; Zhou, H.; Liu, H.; Li, X.; Ding, X.; Wang, Z. Analysis of lateral response of Existing Single Pile Caused by Penetration of Adjacent Pile in Undrained Clay. Comput. Geotech. 2020, 126, 103736.
  • [25] Zhu, B.; Wen, K.; Kong, D.; Zhu, Z.; Wang, L. A Numerical Study on the Lateral Loading Behaviour of Off shore Tetrapod Piled Jacket Foundations in Clay. App. Ocean. Res. 2018, 75, 165–177.
  • [26] Youngho, K.; Sangseom J. Determination of depth-of-fixity point for laterally loaded vertical offshore piles: A new approach. Comput. and Goetech. 2011, 38, 248–257.
  • [27] Wang, H.; Wang, L.; Hong, Y.; Mašín, D.; Li, W.; He, B.; Pan, H. Centrifuge testing on monotonic and cyclic lateral behavior of large-diameter slender piles in sand. Ocean. Eng. 2021, 226, 108299.
  • [28] Zhang H.; Liu R.;, Yuan Y. Influence of spudcan-pile interaction on laterally loaded piles. Ocean. Eng. 2019, 184, 32–39.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c68cb14-eb4f-4464-b702-0ad7a2ba7c1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.