PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bacterial ACC Deaminase Activity in Promoting Plant Growth on Areas Contaminated with Heavy Metals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study was to explore the possible improvement of plant growth using the activity of the bacterial enzyme ACC (1-aminocyclopropane-1-carboxylate) deaminase (endophytes and rhizobacteria). The beneficial effect of ACC deaminase activity was tested on the plants growing under stress conditions (high concentrations of heavy metals: cadmium, lead, zinc in the soil). The bacteria were isolated from three plants species: Festuca rubra L., Agrostis capillaris L., Arabidopsis thaliana L. Heynh, acquired from the area contaminated with heavy metals. The strains with the highest ACC deaminase activity were used to prepare a bacterial consortium and inoculate the plants. It has been shown that inoculation of plants with ACC producing bacteria has a positive effect on their growth under stress conditions. The bacterial entophytes strains showed a higher activity of ACC deaminase, which resulted in a higher biomass growth of inoculated plants. The PGPB bacteria may limit the toxicity of harmful ions and thus the increase the adaptive properties of plants. Moreover, it was discovered that the bacteria mainly belonging to genus Bacillus and Pseudomonas had the highest ACC deaminase activity in the environment contaminated with multiple heavy metals. The use of selected microorganisms and plants will provide results in an increasing efficiency of phytoremediation.
Rocznik
Strony
150--157
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Institute of Environmental Engineering, Brzeznicka 60a, 42-200 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Institute of Environmental Engineering, Brzeznicka 60a, 42-200 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Institute of Environmental Engineering, Brzeznicka 60a, 42-200 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Institute of Environmental Engineering, Brzeznicka 60a, 42-200 Czestochowa, Poland
autor
  • Université de Lille, Sciences et Technologies, Laboratoire de Génie Civil et géo-Environnement, LGCgE EA4515, Bât. SN3, 59655 Villeneuve d´Ascq, France
Bibliografia
  • 1. Bashan Y.de-Bashan I.E. 2005. Bacteria/plant growth-promotion. In: Hillel, D. (eds), Encyclopedia of Soils in the Environment, 1. Elsevier, Oxford, UK, 103–115.
  • 2. Belimov A., Hontzeas N., Safronova V.I., Demchinskaya S.V., Piluzza G., Bullitta S., Glick B.R. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L Czern.), Soil Biol. Biochem., 37, 241–250.
  • 3. Dell’Amico E., Cavalca I., Andreoni V. 2008. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol. Biochem., 40, 74–84.
  • 4. Glick B.R., Penrose D.M, Li J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol., 190, 63–68.
  • 5. Glick B.R., Cheng Z., Czarny J., Duan J. 2007. Promotion of plant growth by ACC deaminaseproducing soil bacteria, Eur J Plant Pathol., 119, 329–339.
  • 6. Glick B.R., Bernard R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research. 169, 1, 30–39.
  • 7. Grobelak A., Kacprzak M., Grosser A., Napora A. 2013. Chemofitostabilizacja gleby zanieczyszczonej kadmem, cynkiem i ołowiem. Annual Set The Environment Protection 15(2),, 1982--2002
  • 8. Grobelak A., Napora A., Kacprzak M. 2014. The impact of plant growth promoting bacteria (PGPB), on the development of phytopathogenic fungi. Folia Biologica et Oecologica. 10, 1, 107– 112. DOI: 10.2478/fobio-2014–0008.
  • 9. Grobelak A., Napora A. 2015. The Chemophytostabilisation Process of Heavy Metal Polluted Soil. PLoS ONE 10(6), e0129538. doi:10.1371/journal.pone.0129538.
  • 10. Hadi F., Nasir A., Ayaz A. 2014. Enhanced Phytoremediation of Cadmium-Contaminated Soil by Parthenium hysterophorus Plant: Effect of Gibberellic Acid (GA3) and Synthetic Chelator, Alone and in Combinations, Bioremediat J. 18,1, 46–55.
  • 11. Hardoim P.R., van Overbeek L.S, van Elsas J.D. 2008. Properties of bacterial endophytes and their proposed role in plant growth, Trends Microbiol., 16, 463–471.
  • 12. Kacprzak M., Grobelak A., Grosser A., Napora A. 2014. The potential of biosolid application for the phytostabilization of metals. Desalin Water Treat., 52, 3955–3964.
  • 13. Kanclerz J., Borowiak K., Mleczek M., Staniszewski R., Lisiak M. 2016. Phragmites australis and Typha angustifolia as Potential Accumulators of Zinc and Copper in Water Ecosystem at City Area. Annual Set The Environment Protection, 18, 246–257
  • 14. Khan A.G. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol., 18, 355–364.
  • 15. Ma Y., Rajkumar M., Freitas H. 2009. Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax 10 for the improvement of copper phytoextraction by Brassica juncea. J. Environ. Manage., 90, 831–837.
  • 16. Madhaiyan M., Poonguzhali S., Ryu J.H., Sa T. M. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane- 1-carboxylate deaminase-containing Methylobacterium fujisawaense, Planta., 224, 268–278.
  • 17. Pal A., Dutta S., Mukherjee P.K., Paul A.K. 2005. Occurrence of heavy metal-resistance in microflora from serpentine soil of Andaman. J. Basic Microbiol., 45, 207–218.
  • 18. Rajkumar M., Ae N., Freitas H. 2009. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere., 77, 153–160.
  • 19. Rashid S., Charles T.C., Glick B.R. 2011. Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol., 61, 217–224.
  • 20. Reed M.L.E, Glick B.R. 2005. Growth of canola (Brassica napus) in the presence of plant growthpromoting bacteria and either copper or polycyclic aromatic hydrocarbons, Can J of Microbiol., 51, 12, 1061–1069.
  • 21. Reiter B., Pfeifer U., Schwab H., Sessitsch A. 2002. Response of endophytic bacterial communities in potato to infection with Erwinia carotovora subsp., Atrospetica, Appl. Environ. Microbiol., 68, 2261–2268.
  • 22. Saleem M., Arshad M., Hussain S., Bhatti A.S. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture, J Ind Microbiol Biotechnol., 34, 635–648.
  • 23. Salihaj M., Bani A., Echevarria G. 2016. Heavy metals uptake by hyperaccumulating flora in some serpentine soils of Kosovo, Global NEST Journal, 18, 1, 214–222.
  • 24. Sgroy V., Cassán F., Masciarelli O., Florencia M., Papa D., Lagares A., Luna V. 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol., 85, 371–381.
  • 25. Shin S.J., Han J.H., Manning E.J., Collins M.T. 2007. Rapid and reliable method for quantification of Mycobacterium paratuberculosis by use of the BACTEC MGIT 960 System, J Clin Microbiol. 45, 6, 1941–1948.
  • 26. Wong-Villareal A., Reyes-López L., Gonzalez H.C., Gonzalez C.B., Yanez-Ocampo G. 2016. Characterization of bacteria isolation of bacteria from Pinyon Rhizosphere, producing biosurfactants from agro-industrial waste. Pol J Microbiol., 65, 2, 183–189.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c689431-861e-48fd-afb6-1fb87c4139b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.