PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bone fracture healing under external fixator: Investigating impacts of several design parameters using Taguchi and ANOVA

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we aim to improve the understanding of the relationship between unilateral-uniplanar external fixator design parameters and their influences on fixator performance. Stability and strength of bone-fixator construct as well as the quality of healing were defined as our major concerns in order to evaluate the performance of fixator. The roles of six key design parameters were assessed during the early stage of healing by using finite element models. Tissue differentiation within the callus was predicted through the implementation of a mechanoregulation theory of bone healing. Taguchi and ANOVA methods were used to achieve optimal design sets for outputs and to determine contribution percentage of each design parameter on outputs. For improving overall fixator performance, optimal set of design parameters consisting of 2 mm, 8 mm, 120 mm, 20 GPa, 50 mm and 20 mm were determined by Taguchi for pin diameter, rod diameter, rod elevation, fixator Young's modulus, distance of the nearest pin to fracture site and distance between adjacent pins, respectively. Also, results of ANOVA revealed that rod elevation is the most important design parameter, with 43 % effectiveness on overall fixator performance, which was followed by fixator material and pin diameter with 28 % and 19 %, respectively. Results of this study can assist orthopedic surgeons to achieve an optimal fixator device with respect to the patient's condition and give insight into the importance of different design parameters.
Twórcy
  • Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Bibliografia
  • [1] Fragomen AT, Rozbruch SR. The mechanics of external fixation. Hss J 2007;3(1):13–29.
  • [2] Roseiro LM, Neto MA, Amaro A, Leal RP, Samarra MC. External fixator configurations in tibia fractures: 1D optimization and 3D analysis comparison. Comput Methods Programs Biomed 2014;113(1):360–70.
  • [3] Beltsios M, Savvidou O, Kovanis J, Alexandropoulos P, Papagelopoulos P. External fixation as a primary and definitive treatment for tibial diaphyseal fractures. Strateg Trauma Limb Reconstr 2009;4(2):81–7.
  • [4] Andreykiv A, Van Keulen F, Prendergast P. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech Model Mechanobiol 2008;7(6):443–61.
  • [5] McKibbin B. The biology of fracture healing in long bones, the Journal of Bone and Joint Surgery. British volume 1978;60(2):150–62.
  • [6] Goodship A, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br 1985;67(4):650–5.
  • [7] Green E, Lubahn J, Evans J. Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv 2005;14(2):64–72.
  • [8] Prendergast P, Huiskes R, Søballe K. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 1997;30(6):539–48.
  • [9] Carter DR, Beaupré GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 1998;355: S41–55.
  • [10] Isaksson H, Wilson W, van Donkelaar CC, Huiskes R, Ito K. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J Biomech 2006;39(8):1507–16.
  • [11] Roux W. Gesammelte abhandlungen über entwickelungsmechanik der organismen: bd. Entwicklungsmechanik des embryo. Wilhelm Engelmann; 1895.
  • [12] Pauwels F. Biomechanics of the locomotor apparatus. (Translated from german by P. Maquet and R. furlong). Berlin, Heidleberg: Springer-Verlag; 1980.
  • [13] Perren S. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res 1979;138:175–96.
  • [14] Byrne DP, Lacroix D, Prendergast PJ. Simulation of fracture healing in the tibia: mechanoregulation of cell activity using a lattice modeling approach. J Orthop Res 2011;29 (10):1496–503.
  • [15] Miramini S, et al. Computational simulation of the early stage of bone healing under different configurations of locking compression plates. Comput Methods Biomech Biomed Engin 2015;18(8):900–13.
  • [16] Zhang1 L, Miramini S, Mendis P, Richardson M, Pirpiris M, Oloyede A. The effects of flexible fixation on early stage bone fracture healing; 2013.
  • [17] Gasser B, Boman B, Wyder D, Schneider E. Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixators; 1990.
  • [18] Willie B, Adkins K, Zheng X, Simon U, Claes L. Mechanical characterization of external fixator stiffness for a rat femoral fracture model. J Orthop Res 2009;27(5):687–93.
  • [19] Chao EY, Hein TJ. Mechanical performance of the standard Orthofix external fixator. Orthopedics 1988;11(7):1057–69.
  • [20] Giotakis N, Narayan B. Stability with unilateral external fixation in the tibia. Strateg Trauma Limb Reconstr 2007;2 (1):13.
  • [21] Roberts CS, Dodds JC, Perry K, Beck D, Seligson D, Voor MJ. Hybrid external fixation of the proximal tibia: strategies to improve frame stability. J Orthop Trauma 2003;17(6): 415–20.
  • [22] Kim J-D, Kim N-S, Hong C-S, Oh C-Y. Design optimization of a xenogeneic bone plate and screws using the Taguchi and finite element methods. Int J Precis Eng Manuf 2011;12 (6):1119–24.
  • [23] Sheng W, Ji A, Fang R, He G, Chen C. Finite element-and design of experiment-derived optimization of screw configurations and a locking plate for internal fixation system. Comput Math Methods Med 2019;2019.
  • [24] Epari DR, Taylor WR, Heller MO, Duda GN. Mechanical conditions in the initial phase of bone healing. Clin Biomech 2006;21(6):646–55.
  • [25] Klein P, et al. The initial phase of fracture healing is specifically sensitive to mechanical conditions. J Orthop Res 2003;21(4):662–9.
  • [26] Pettine KA, Chao E, Kelly PJ. Analysis of the external fixator pin-bone interface. Clin Orthop Relat Res 1993;293:18–27.
  • [27] Kim W-Y, Hearn TC, Seleem O, Mahalingam E, Stephen D, Tile M. Effect of pin location on stability of pelvic external fixation. Clin Orthop Relat Res 1999;361:237–44.
  • [28] Ramlee MH, Wahab AHA, Wahab AA, Latip HFM, Daud SA, Kadir MRA. The effect of stress distribution and displacement of open subtalar dislocation in using titanium alloy and stainless steel mitkovic external fixator-a finite element analysis. Malay J Fundam Appl Sci 2017;15:477–82.
  • [29] Sellei R, et al. Biomechanical properties of different external fixator frame configurations. Eur J Trauma Emerg Surg 2015;41(3):313–8.
  • [30] Sellei RM, et al. External fixation design evolution enhances biomechanical frame performance. Injury 2015;46:S23–6.
  • [31] Huiskes R, Chao E. Guidelines for external fixation frame rigidity and stresses. J Orthop Res 1986;4(1):68–75.
  • [32] Bronson DG, Ross J, Toombs J, Welch R. Influence of the connecting rod on the biomechanical properties of five external skeletal fixation configurations. Vet Comp Orthop Traumatol 2003;16(02):82–7.
  • [33] Sternick MB, Dallacosta D, Bento DÁ, do Reis ML. Relationship between rigidity of external fixator and number of pins: computer analysis using finite elements. Revista Brasileira de Ortopedia (English Edition) 2012;47 (5):646–50.
  • [34] Kaman M, Celik N, Karakuzu S. Numerical stress analysis of the plates used to treat the tibia bone fracture. J Appl Math Phys 2014;2(06):304.
  • [35] Saidpour SH. Assessment of carbon fibre composite fracture fixation plate using finite element analysis. Ann Biomed Eng 2006;34(7):1157–63.
  • [36] Lacroix D, Prendergast P. A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 2002;35(9):1163–71.
  • [37] Claes L, Augat P, Suger G, Wilke HJ. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 1997;15(4):577–84.
  • [38] Wolfram U, Schwiedrzik J. Post-yield and failure properties of cortical bone. Bonekey Rep 2016;5.
  • [39] Allen R. Standard specification for wrought 18 chromium- 14 nickle-2.5 molybdenum stainless steel bar and wire for surgical implants (F138), Annual Book of ASTM Standards. Medical Devices and Services 1998.
  • [40] Thamizhmanii S, Saparudin S, Hasan S. Analyses of surface roughness by turning process using Taguchi method. J Achiev Mater Manuf Eng 2007;20(1-2):503–6.
  • [41] Hatam A, Khalkhali A. Simulation and sensitivity analysis of wear on the automotive brake pad. Simul Model Pract Theory 2018;84:106–23.
  • [42] Fung C-P, Kang P-C. Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis. J Mater Process Technol 2005;170(3):602–10.
  • [43] Al-Momani E, Rawabdeh I. An application of finite element method and design of experiments in the optimization of sheet metal blanking process. JJMIE 2008;2(1):53–63.
  • [44] Benli S, Aksoy S, Havitcioglu H, Kucuk M. Evaluation of bone plate with low-stiffness material in terms of stress distribution. J Biomech 2008;41(15):3229–35.
  • [45] Ganesh V, Ramakrishna K, Ghista DN. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates. Biomed Eng Online 2005;4(1):46.
  • [46] Lacroix D, Prendergast P. Three-dimensional simulation of fracture repair in the human tibia. Comput Methods Biomech Biomed Engin 2002;5(5):369–76.
  • [47] Son D-S, Mehboob H, Jung H-J, Chang S-H. The finite element analysis for endochondral ossification process of a fractured tibia applied with a composite IM-rod based on a mechano-regulation theory using a deviatoric strain. Compos Part B Eng 2014;56:189–96.
  • [48] Chen H, Zhang Y, Xia H, Wang F, Li Z, Chen X. Stability of tibial defect reconstruction with fibular graft and unilateral external fixation: a finite element study. Int J Clin Exp Med 2014;7(1):76.
  • [49] Radke H, Aron DN, Applewhite A, Zhang G. Biomechanical analysis of unilateral external skeletal fixators combined with IM-pin and without IM-pin using finite-element method. Vet Surg 2006;35(1):15–23.
  • [50] O'Sullivan ME, Bronk JT, Chao E, Kelly PJ. Experimental study of the effect of weight bearing on fracture healing in the canine tibia. Clin Orthop Relat Res 1994;302:273–83.
  • [51] Ruedi TP. AO principles of fracture management. Thieme; 2000.
  • [52] Ang B, et al. Externalised locking compression plate as an alternative to the unilateral external fixator: a biomechanical comparative study of axial and torsional stiffness. Bone Joint Res 2017;6(4):216–23.
  • [53] Isaksson H, Van Donkelaar CC, Huiskes R, Ito K. Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. J Orthop Res 2006;24(5):898–907.
  • [54] Ganadhiepan G, Miramini S, Patel M, Mendis P, Zhang L. Bone fracture healing under Ilizarov fixator: influence of fixator configuration, fracture geometry, and loading. Int J Numer Method Biomed Eng 2019;35(6):e3199.
  • [55] Finlay JB, Moroz T, Rorabeck C, Davey J, Bourne R. Stability of ten configurations of the Hoffmann external-fixation frame, the Journal of Bone and Joint Surgery. American volume 1987;69(5):734–44.
  • [56] Claes L, et al. Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing. J Orthop Res 2011;29(3):425–32.
  • [57] Claes L. Biomechanical principles and mechanobiologic aspects of flexible and locked plating. J Orthop Trauma 2011;25:S4–7.
  • [58] Cheal E, Mansmann K, Digioia IIIA, Hayes W, Perren S. Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy. J Orthop Res 1991;9(1):131–42.
  • [59] Claes L, Wilke H-J, Kemper F. Interfragmentary strain and bone healing–an experimental study. J Orthop Trauma 1988;2(1):67.
  • [60] Meyer U, et al. The effect of magnitude and frequency of interfragmentary strain on the tissue response to distraction osteogenesis. J Oral Maxillofac Surg 1999;57 (11):1331–9.
  • [61] Son D-S, Chang S-H. The simulation of bone healing process of fractured tibia applied with composite bone plates according to the diaphyseal oblique angle and plate modulus. Compos Part B Eng 2013;45(1):1325–35.
  • [62] Mehboob H, Chang S-H. Evaluation of healing performance of biodegradable composite bone plates for a simulated fractured tibia model by finite element analysis. Compos Struct 2014;111:193–204.
  • [63] Pommer A, David A, Barczik P, Muhr G. Loosening of Schanz screws in external fixator montage of the lower extremity. Unfallchirurg 1998;101(9):708–12.
  • [64] Claes L, Heigele C. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 1999;32(3):255–66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c607128-afce-49a6-a7d4-11ea508d8433
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.