PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of direct and inverse kinematics and dynamics in motion planning of manipulator links

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For the synthesis of manipulators and robots, an accurate analysis of the movements of the individual links is essential. This thesis deals with motion planning of the effector of a multi-linked manipulator. An important topic in this area is the orientation and position of links and kinematic pairs in space. In particular, attention should be paid to the position of their endpoint as well as other significant points. Trajectory planning allows the manipulator to perform complex tasks, such as picking and placing objects or following a particular path in space. Overall, trajectory planning of a multibody manipulator involves a combination of direct and inverse kinematics calculations, as well as control theory and optimization techniques. It is an important process enabling manipulators to perform complex tasks such as assembly, handling and inspection. In the design of robot kinematic structures, simulation programs are currently used for their kinematic and dynamic analysis. The proposed manipulator was first solved by inverse kinematics problem in Matlab. Subsequently, the trajectories of the end-effector were determined in Matlab by a direct kinematics problem. In Simulink, using the SimMechanics library, the inverse problem of dynamics was used to determine the trajectories of the moments.
Rocznik
Strony
53--64
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Technical University of Košice, SLOVAK REPUBLIC
  • Faculty of Mechanical Engineering, Technical University of Košice, SLOVAK REPUBLIC
  • Faculty of Mechanical Engineering, Technical University of Košice, SLOVAK REPUBLIC
autor
  • Faculty of Mechanical Engineering, Technical University of Košice, SLOVAK REPUBLIC
autor
  • Faculty of Mechanical Engineering, Technical University of Košice, SLOVAK REPUBLIC
  • Faculty of Mechanical Engineering, Technical University of Košice, SLOVAK REPUBLIC
Bibliografia
  • [1] Hroncová D., Delyová I. and Frankovský P. (2021): Kinematics of positioning device for material handling in manufacturing.– Act. Log., vol.8, No.1, pp.11-18.
  • [2] Lewis F.L., Dawson D.M. and Abdallah C.T. (2003): Robot Manipulator Control: Theory and Practice.– CRC Press.
  • [3] Angeles, J. (Ed.). (2003): Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms.– New York, NY: Springer New York.
  • [4] Kuryło P., Cyganiuk J., Tertel E. and Frankovský P. (2016): Machine vision investigate the trajectory of the motion human body–review of the methods.– Act. Mech., vol.1, No.2, pp.7-13.
  • [5] Sapietová A., Saga M., Kuric I. and Václav Š. (2018): Application of optimization algorithms for robot systems designing.– Int. J. of Adv. Rob. Sys., vol.15, No.1, pp.1-10.
  • [6] Božek P. and Lozhkin A. (2019): The precision calculating method of robots moving by the plane trajectories.– Int. J. of Adv. Rob. Sys., vol.16, No.6, pp.1-8.
  • [7] Siciliano B., Khatib O. and Kröger T. (Eds.) (2008): Springer Handbook of Robotics (Vol. 200).– Berlin: Springer.
  • [8] Siciliano B., Sciavicco L., Villani L. and Oriolo G. (2009): Trajectory Planning, In: Robotics: Modelling, Planning and Control.– Springer, pp. 161-189.
  • [9] Kuryło P., Pivarčiová E., Cyganiuk J. and Frankovský P. (2019): Machine vision system measuring the trajectory of upper limb motion applying the matlab software.– Meas. Scie. Rev., vol.19, No.1, pp.1-8.
  • [10] Kuric I., Tlach V., Sága M., Císar M. and Zajačko I. (2021): Industrial robot positioning performance measured on inclined and parallel planes by double ballbar.– App. Scien., vol.11, No.4, pp.1-17.
  • [11] Lenarčič J. and Stanišić M.M. (Eds.) (2010): Advances in robot kinematics: motion in man and machine.– Springer Science & Business Media.
  • [12] Hroncová D., Miková Ľ., Gmiterko A., Delyová I., Sivák P. and Frankovský P. (2019): Contribution to computer simulation of problems from the theory of mechanisms focused on robots.– In AIP Conference Proceedings, vol.2198, No.1, p.020005, AIP Publishing LLC.
  • [13] Frankovský P., Hroncová D., Delyová I. and Virgala I. (2013): Modeling of dynamic systems in simulation environment MATLAB/Simulink-SimMechanics.– Am. J. of Mech. Eng., vol.1, No.7, pp.282-288.
  • [14] Baressi Šegota S., Anđelić, N., Lorencin I., Saga M. and Car Z. (2020): Path planning optimization of six-degree-of freedom robotic manipulators using evolutionary algorithms.– Int. J. of Adv. Rob. Sys., vol.17, No.2, pp.1-16.
  • [15] Hroncová D. and Delyová, I. (2020): Computer Simulation Using MSC ADAMS.– Act. Mech., vol.5, No.3, pp.41-46.
  • [16] Vavro Jr J., Vavro J., Kováčiková P. and Bezdedová R. (2017): Kinematic and dynamic analysis of planar mechanisms by means of the solid works software.– Proc. Eng., vol.177, pp.476-481.
  • [17] Grepl R. (2004): Computer modelling of rigid body systems dynamics.– Laboratory of Mechatronics and Robotics-a joint workplace of the Institute of Solid Mechanics, Mechatronics and Biomechanics of the Brno University of Technology and the Institute of Thermomechanics of the Academy of Sciences of the Czech Republic.
  • [18] Grepl R. (2007): Modelling of Mechatronic Systems in Matlab.– Sim Mechanics, BEN.
  • [19] Frankovský P., Dominik L., Gmiterko A., Virgala I., Kurylo P. and Perminova O. (2017): Modeling of two-wheeled self-balancing robot driven by DC gearmotors.– Int. J. of App. Mech. and Eng., vol.22, No.3, pp.739-747.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c5ac24f-c34c-4aa5-900b-958497a03863
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.