PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ solanki na destrukcję powłok epoksydowychWpływ solanki na destrukcję powłok epoksydowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The influence of brine on the destruction of epoxy coatings
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wpływ oddziaływania solanki na degradację struktury chemicznej powłokotwórczego tworzywa epoksydowego oraz na destrukcję fizyczną powłok. Kontakt powłok epoksydowych z solanką przyczynił się do zwiększenia ich nasiąkliwości oraz do zmiany właściwości cieplnych. Oddziaływanie solanki skutkowało różnego typu destrukcją powłok, na przykład, w formie kraterów oraz w postaci wykruszania fragmentów z ich warstw powierzchniowych. Defekty te przyczyniły się bezpośrednio do wzrostu chropowatości powierzchni powłok, ocenianej za pomocą parametrów Ra oraz Rz, oraz do znacznej zmiany topografii powierzchni. Natomiast starzenie powłok solanką tylko nieznacznie wpłynęło na ich połysk.
EN
The article concerns the influence of brine on the chemical structure degradation of epoxy coatings’ material and on physical degradation of the coatings. A contact of epoxy coatings with brine contributed to their water absorption increase and thermal properties change. The influence of brine resulted in several kinds of coatings’ destruction, for example in the shape of craters and in the form of fragments chipping from surface layers. These defects contributed directly to the increase of roughness surface, evaluated with Ra and Rz parameters, and to the essential change of surface topography. On the other hand, ageing of coatings with brine only slightly influenced their gloss.
Rocznik
Tom
Strony
88--93
Opis fizyczny
Bibliogr. 48 poz., tab., wykr.
Twórcy
  • Uniwersytet Technologiczno-Humanistyczny w Radomiu
  • Uniwersytet Technologiczno-Humanistyczny w Radomiu
Bibliografia
  • [1] Bai W. Ma Y., Meng M., Ying Li Y. 2021. “The influence of graphene on the cathodic protection performance of zinc-rich epoxy coatings”. Progress in Organic Coatings 161: 106456
  • [2] Chen L., Yu Z., Yin D., Cao K., Xie C., Zhu L., Jiang Y. 2022. “Preparation and anticorrosion properties of GO-Ce-MOF nanocomposite coatings”. Applied Polymer 139 (5): 51571
  • [3] Cogulet A.; P. Blanchet, Véronic Landry. 2019. “Evaluation of the Impacts of Four Weathering Methods on Two Acrylic Paints: Showcasing Distinctions and Particularities”. Coatings 9 (2): 121–134.
  • [4] Daneshifar M. H.; S.A. Sajjadi, S. M. Zebarjad, M. Mohammadtaher, M. Abbasi, K. Mossaddegh. 2019.“The effects of fillers on properties of automotive nano-composite clear coats: Type, content and surface functionalization”. Progress in Organic Coatings 134: 33–39.
  • [5] Golru S. Sharifi, Attar M. M., Ramezanzadeh B. 2014. “Studying the influence of nano-Al2O3 particles on the corrosion performance and hydrolytic degradation resistance of an epoxy/polyamide coating on AA-1050”. Progress in Organic Coatings 77: 1391-1399.
  • [6] Gu H., at al. 2016. “Investigation on contact angle measurement methods and wettability transition of porous surfaces”. Surface and Coatings Technology 292: 72-77.
  • [7] Karataş S., Kizilkaya C., Kayaman-Apohan N., Güngör A. 2007. “Preparation and characterization of sol-gel derived UV-curable organo-silica-titania hybrid coatings”. Progress in Organic Coatings 60(2): 140-147.
  • [8] Kirsch S., Pfau A., Frechen T., Schrif W., Pfohler P., Francke D. 2001. “Scrub resistance of highly pigmented paints. A study on abrasion mechanisms of different scrub techniques”. Progress in Organic Coatings 43: 99-110.
  • [9] Knowles T. 2006. “The new toolbox. Nanotechnology in paints and coatings”. European Coatings Journal 3: 16-18.
  • [10] Kotnarowska D. 1997. “Kinetics of wear of epoxide coating modified with glass microspheres and exposed to the impact of alundum particles”.Progress in Organic Coatings 31: 325-330
  • [11] Kotnarowska D. 1999. “Influence of ultraviolet radiation and aggressive media on epoxy coating degradation”. Progress in Organic Coatings 37: 149–159.
  • [12] Kotnarowska D. 1999. “Wpływ czynników otoczenia na własności eksploatacyjne powłok epoksydowych urządzeń technicznych”.Radom, Wydawnictwo Politechniki Radomskiej.
  • [13] Kotnarowska D. 2006. “Examination of dynamic of polymeric coatings erosive wear process”. Materials Science 12 (2): 138-143.
  • [14] Kotnarowska D. 2006. “Influence of Ultraviolet Radiation on Erosive Resistance of Modified Epoxy Coatings”. Solid State Phenomena 113: 585-588.
  • [15] Kotnarowska D. 2009. “Effect of nanofillers on wear resistance of polymer coatings”. Solid State Phenomena 144: 285-290. (Pt. B of Diffusion and Defect Data - Solid State Data).
  • [16] Kotnarowska D. 2010. “Epoxy coating destruction as a result of sulphuric acid aqueous solution action”. Progress in Organic Coatings 67: 324–328.
  • [17] Kotnarowska D., Przerwa M., Wojtyniak M. 2011. „Influence of Polymer Coatings modification with nanoparticles on their erosion”. Journal of Vibroengineering 13(4):, 870-876.
  • [18] Kotnarowska D. 2013.„Destrukcja powłok polimerowych pod wpływem czynników eksploatacyjnych”. Radom, Wydawnictwo UTH w Radomiu.
  • [19] Kotnarowska D. 2013. “Impact of operating environment on the protective and decorative properties of epoxy coatings”. Ochrona przed Korozją 9:372-383.
  • [20] Kotnarowska D. 2015. “Destruction of Epoxy Coatings under the Influence of Sodium Chloride Water Solutions”. Solid State Phenomena 220: 609-614.
  • [21] Kotnarowska D. 2019. “Analysis of polyurethane top-coat destruction on erosion kinetics of polyurethane-epoxy coating system”. Maintenance and Reliability 21 (1): 103–114.
  • [22] Kotnarowska D., Urban P. 2021. Wpływ płynu do mycia szyb na destrukcję powłok akrylowych nadwozi samochodowych. Ochrona przed Korozją 64(9), s. 288-293.
  • [23] Kotnarowska D. 2021. “The influence of battery acid on the destruction of acrylic coatings of car bodies”. Coatings 11 (8), p. 967–987.
  • [24] Kozhukharov S., Kozhukharov V., Wittmar M., Schem M., Aslan M., Caparrotti H., Veith M. 2011. “Protective abilities of nanocomposite coatings containing Al2O3 nano-particles loaded by CeCl3 “. Progress in Organic Coatings 71: 198- 205.
  • [25] Leder G., Ladwig T., Valter V., Frahn S., Meyer J. 2002. “New effects of fumed silica in modern coatings”. Progress in Organic Coatings 45: 139-144.
  • [26] Levy A.V. 1995. “Erosion and erosion-corrosion of metals”. Corrosion 51(11): 872-883.
  • [27] Lü N., Lü X., Jin X., Lü C. 2006. “Preparation and characterization of UV-curable ZnO/polymer nanocomposite films”. Polymer International 56: 138-143.
  • [28] Matin E., .Attar M. M., Ramezanzadeh B. 2015. “Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate”. Progress in Organic Coatings 78: 395-403.
  • [29] Montemor M.F. 2014. “Functional and smart coatings for corrosion protection: A review”. Surface and Coatings Technology 258: 17–37.
  • [30] Narisawa I. 1987. “Resistance of Polymer Materials”. Moscow: Ed. Chemistry
  • [31] Nguyen T.J. Martin, E. Byrd, N. Embree. 2002. “Relating laboratory and outdoor exposure of coatings: II. Effects of relative humidity on photo degradation and the apparent quantum yield of acrylic-melamine coatings”. Journal of Coatings Technology 74: 65–80.
  • [32] Nguyen-Tri P., Tran Hai Nguyen, C. O. Plamondon at al. 2019. “Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review”. Progress in Organic Coatings 132: 235–263.
  • [33] Pickett J.E., J. R. Sargent. 2009. “Sample Temperatures during Outdoor and Laboratory Weathering Exposures”. Polymer Degradation and Stability 94 (2): 189 –195.
  • [34] Pilotek S., Tabellion F. 2005. Nanoparticles in coatings. Tailoring properties to applications. European Coatings Journal 4:170-177.
  • [35] Prak L., Sumranwanich T., Tangtermsirikul S. 2022. „Experimental investigation on the degradation of coating on concrete surfaces exposed to accelerated and natural UV in chloride environment”. Journal of Adhesion Science. Published online: 22 Jan 2022.
  • [36] Pulikkalparambil H., Parameswaranpillai J., Siengchin S., Pionteck J. 2021. “UV light triggered self-healing of green epoxy coatings”. Construction and Building Materials 305: 124725
  • [37] Ratner S.B., Styller E.E. 1981. “Characteristics of impact friction and wear of polymeric materials”. Wear 73: 213-234.
  • [38] Romo-Uribe A., Arcos-Casarrubias J., A., Hernandez-Vargas M. 2016. “Acrylate hybrid nanocomposite coatings based on SiO2 nanoparticles by in-situ batch emulsion polymerization”. Progress in Organic Coatings 97: 288-300.
  • [39] Song S., Yan H., Cai M., Huang Y., Fan X., Zhu M. 2021. “Multilayer structural epoxy composite coating towards long-term corrosion/wear protection”. Carbon 183: 42-52.
  • [40] Trezona R.I., Hutchings I.M. 2001. “Resistance of paint coatings to multiple solid particle impact: effect of coating thickness and substrate material”.Progress in Organic Coatings 41: 85-92.
  • [41] Wahby M.H., A.M. Atta, Y.M. Moustafa, A.O. Ezzat, A.I. Hashem. 2021. “Curing of Functionalized Superhydrophobic Inorganic/Epoxy Nanocomposite and Application as Coatings for Steel”. Coatings 11(1): 83–111.
  • [42] Wang Y., Lim S., Luo J.L., Xu Z.H. 2006. “Tribological and corrosion behaviors of Al2O3/polymer nanocomposite coatings”. Wear 260: 976-983.
  • [43] Yue Q., Wu L., Lv J., Wang A., Ding R., Wang Y. 2021. “Study on anti-corrosion performance and mechanism of epoxy coatings based on basalt flake loaded aniline trimer”. Colloid and Interface Science Communications 45: 100505.
  • [44] Zahavi J., Schmitt G.F. 1981. “Solid particle erosion of rein coatings”. Wear 71: 191-210.
  • [45] Zubielewicz M. 2008. „Wpływ nanocząstek SiO2 na właściwości lakierów i powłok lakierowych”. Ochrona przed Korozją 51 (12): 462–464.
  • [46] Zubielewicz M., Królikowska A. 2009. “The influence of ageing of epoxy coatings on adhesion of polyurethane topcoats and protective properties of coating systems”. Progress in Organic Coatings 66: 129-136.
  • [47] Zyska B., Żakowska Z. 2005. „Mikrobiologia materiałów”, Wydawnictwo Politechniki Łódzkiej, Łódź.
  • [48] Żenkiewicz M. 2000. „Adhezja i modyfikowanie warstwy wierzchniej tworzyw wielkocząsteczkowych”. Warszawa: WNT.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c597eab-112c-447b-9031-3d0d0028242f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.